Nenhuma descrição

田运杰 e851f2d564 Update requirements.txt 10 meses atrás
assets d1bdba1c9a Del 10 meses atrás
docker 1c68863560 upload docker 10 meses atrás
examples 1c0ef1216a examples 10 meses atrás
tests c4a0a465fc test 10 meses atrás
ultralytics b70d368b3e A2 10 meses atrás
LICENSE 2758ec06b2 Initial commit 10 meses atrás
README.md 75bdf93b2b Update README.md 10 meses atrás
app.py de8bb761ef demo 10 meses atrás
mkdocs.yml dd89c57437 mkdocs 10 meses atrás
pyproject.toml 4adbe10cf2 upload pyproject 10 meses atrás
requirements.txt e851f2d564 Update requirements.txt 10 meses atrás

README.md

YOLOv12: Attention-Centric Real-Time Object Detector

Official PyTorch implementation of YOLOv12.


Comparisons with others in terms of latency-accuracy (left) and FLOPs-accuracy (right) trade-offs.

YOLOv12: Attention-Centric Real-Time Object Detector.\ Yunjie Tian, Qixiang Ye, and David Doermann

arXiv

UPDATES 🔥

  • 2025/02/18: Arxiv

Abstract Enhancing the network architecture of the YOLO framework has been crucial for a long time but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms.

YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters.

Main Results

COCO

Installation

wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
conda create -n yolov12 python=3.11
conda activate yolov12
pip install -r requirements.txt
pip install -e .

Validation

yolov12n yolov12s yolov12m yolov12l yolov12x

from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.val(data='coco.yaml', save_json=True)

Training

from ultralytics import YOLO

model = YOLO('yolov12n.yaml')

# Train the model
results = model.train(
  data='coco.yaml',
  epochs=600, 
  batch=256, 
  imgsz=640,
  scale=0.5,  # S:0.9; M:0.9; L:0.9; X:0.9
  mosaic=1.0,
  mixup=0.0,  # S:0.05; M:0.15; L:0.15; X:0.2
  copy_paste=0.1,  # S:0.15; M:0.4; L:0.5; X:0.6
  device="0,1,2,3,4,5,6,7",
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()

Prediction

from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.predict()

Export

from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.export(format="engine", half=True)  # or ONNX format

Demo

python app.py
# Please visit http://127.0.0.1:7860

Acknowledgement

The code base is based on ultralytics. Thanks for their excellent work!

Citation

@article{tian2025yolov12,
  title={YOLOv12: Attention-Centric Real-Time Object Detectors},
  author={Tian, Yunjie and Ye, Qixiang and Doermann, David},
  journal={arXiv preprint arXiv:2502.xxxxx},
  year={2025}
}
Model size
(pixels)
mAPval
50-95
Speed
T4 TensorRT10
params
(M)
FLOPs
(G)
YOLO12n 640 40.6 1.64 2.6 6.5
YOLO12s 640 48.0 2.61 9.3 21.4
YOLO12m 640 52.5 4.86 20.2 67.5
YOLO12l 640 53.7 6.77 26.4 88.9
YOLO12x 640 55.2 11.79 59.1 199.0