|
|
@@ -56,12 +56,8 @@ pip install -e .
|
|
|
```python
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
-model = YOLO.from_pretrained('sunsmarterjie/yolov12{n/s/m/b/l/x}')
|
|
|
-# or
|
|
|
-# wget https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12{n/s/m/l/x}.pt
|
|
|
-model = YOLO('yolov12{n/s/m/b/l/x}.pt')
|
|
|
-
|
|
|
-model.val(data='coco.yaml', batch=128)
|
|
|
+model = YOLO('yolov12{n/s/m/l/x}.pt')
|
|
|
+model.val(data='coco.yaml', save_json=True)
|
|
|
```
|
|
|
|
|
|
## Training
|
|
|
@@ -74,9 +70,13 @@ model = YOLO('yolov12n.yaml')
|
|
|
results = model.train(
|
|
|
data='coco.yaml',
|
|
|
epochs=600,
|
|
|
- batch=128,
|
|
|
+ batch=256,
|
|
|
imgsz=640,
|
|
|
- device="0,1,2,3",
|
|
|
+ scale=0.5, # S:0.9; M:0.9; L:0.9; X:0.9
|
|
|
+ mosaic=1.0,
|
|
|
+ mixup=0.0, # S:0.05; M:0.15; L:0.15; X:0.2
|
|
|
+ copy_paste=0.1, # S:0.15; M:0.4; L:0.5; X:0.6
|
|
|
+ device="0,1,2,3,4,5,6,7",
|
|
|
)
|
|
|
|
|
|
# Evaluate model performance on the validation set
|