Kaynağa Gözat

Update README.md

田运杰 10 ay önce
ebeveyn
işleme
6a80e16f1d
1 değiştirilmiş dosya ile 1 ekleme ve 3 silme
  1. 1 3
      README.md

+ 1 - 3
README.md

@@ -50,7 +50,6 @@ YOLOv12 surpasses all popular real-time object detectors in accuracy with compet
 ## Main Results
 
 **Turbo (default)**:
-
 | Model                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>T4 TensorRT10<br> | params<br><sup>(M) | FLOPs<br><sup>(G) |
 | :----------------------------------------------------------------------------------- | :-------------------: | :-------------------:| :------------------------------:| :-----------------:| :---------------:|
 | [YOLO12n](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12n.pt) | 640                   | 40.4                 | 1.60                            | 2.5                | 6.0               |
@@ -59,8 +58,7 @@ YOLOv12 surpasses all popular real-time object detectors in accuracy with compet
 | [YOLO12l](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12l.pt) | 640                   | 53.8                 | 5.83                            | 26.5               | 82.4              |
 | [YOLO12x](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12x.pt) | 640                   | 55.4                 | 10.38                           | 59.3               | 184.6             |
 
-**V1.0**:
-
+[**V1.0**](https://github.com/sunsmarterjie/yolov12/tree/V1.0):
 | Model                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>T4 TensorRT10<br> | params<br><sup>(M) | FLOPs<br><sup>(G) |
 | :----------------------------------------------------------------------------------- | :-------------------: | :-------------------:| :------------------------------:| :-----------------:| :---------------:|
 | [YOLO12n](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12n.pt) | 640                   | 40.6                 | 1.64                            | 2.6                | 6.5               |