瀏覽代碼

turbo cfg

田运杰 10 月之前
父節點
當前提交
0475ea26b0
共有 1 個文件被更改,包括 11 次插入9 次删除
  1. 11 9
      ultralytics/cfg/models/v12/yolov12.yaml

+ 11 - 9
ultralytics/cfg/models/v12/yolov12.yaml

@@ -1,30 +1,32 @@
 # YOLOv12 🚀, AGPL-3.0 license
 # YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
+# CFG file for YOLOv12-turbo
 
 # Parameters
 nc: 80 # number of classes
 scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
   # [depth, width, max_channels]
-  n: [0.50, 0.25, 1024] # summary: 465 layers, 2,603,056 parameters, 2,603,040 gradients, 6.7 GFLOPs
-  s: [0.50, 0.50, 1024] # summary: 465 layers, 9,285,632 parameters, 9,285,616 gradients, 21.7 GFLOPs
-  m: [0.50, 1.00, 512] # summary: 501 layers, 20,201,216 parameters, 20,201,200 gradients, 68.1 GFLOPs
-  l: [1.00, 1.00, 512] # summary: 831 layers, 26,454,880 parameters, 26,454,864 gradients, 89.7 GFLOPs
-  x: [1.00, 1.50, 512] # summary: 831 layers, 59,216,928 parameters, 59,216,912 gradients, 200.3 GFLOPs
+  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
+  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
+  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
+  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
+  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs
 
-# YOLO12n backbone
+
+# YOLO12-turbo backbone
 backbone:
   # [from, repeats, module, args]
   - [-1, 1, Conv,  [64, 3, 2]] # 0-P1/2
-  - [-1, 1, Conv,  [128, 3, 2]] # 1-P2/4
+  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 1-P2/4
   - [-1, 2, C3k2,  [256, False, 0.25]]
-  - [-1, 1, Conv,  [256, 3, 2]] # 3-P3/8
+  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 3-P3/8
   - [-1, 2, C3k2,  [512, False, 0.25]]
   - [-1, 1, Conv,  [512, 3, 2]] # 5-P4/16
   - [-1, 4, A2C2f, [512, True, 4]]
   - [-1, 1, Conv,  [1024, 3, 2]] # 7-P5/32
   - [-1, 4, A2C2f, [1024, True, 1]] # 8
 
-# YOLO12n head
+# YOLO12-turbo head
 head:
   - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
   - [[-1, 6], 1, Concat, [1]] # cat backbone P4