index.cjs 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. 'use strict';
  2. var epsilon = 1.1102230246251565e-16;
  3. var splitter = 134217729;
  4. var resulterrbound = (3 + 8 * epsilon) * epsilon;
  5. // fast_expansion_sum_zeroelim routine from oritinal code
  6. function sum(elen, e, flen, f, h) {
  7. var Q, Qnew, hh, bvirt;
  8. var enow = e[0];
  9. var fnow = f[0];
  10. var eindex = 0;
  11. var findex = 0;
  12. if ((fnow > enow) === (fnow > -enow)) {
  13. Q = enow;
  14. enow = e[++eindex];
  15. } else {
  16. Q = fnow;
  17. fnow = f[++findex];
  18. }
  19. var hindex = 0;
  20. if (eindex < elen && findex < flen) {
  21. if ((fnow > enow) === (fnow > -enow)) {
  22. Qnew = enow + Q;
  23. hh = Q - (Qnew - enow);
  24. enow = e[++eindex];
  25. } else {
  26. Qnew = fnow + Q;
  27. hh = Q - (Qnew - fnow);
  28. fnow = f[++findex];
  29. }
  30. Q = Qnew;
  31. if (hh !== 0) {
  32. h[hindex++] = hh;
  33. }
  34. while (eindex < elen && findex < flen) {
  35. if ((fnow > enow) === (fnow > -enow)) {
  36. Qnew = Q + enow;
  37. bvirt = Qnew - Q;
  38. hh = Q - (Qnew - bvirt) + (enow - bvirt);
  39. enow = e[++eindex];
  40. } else {
  41. Qnew = Q + fnow;
  42. bvirt = Qnew - Q;
  43. hh = Q - (Qnew - bvirt) + (fnow - bvirt);
  44. fnow = f[++findex];
  45. }
  46. Q = Qnew;
  47. if (hh !== 0) {
  48. h[hindex++] = hh;
  49. }
  50. }
  51. }
  52. while (eindex < elen) {
  53. Qnew = Q + enow;
  54. bvirt = Qnew - Q;
  55. hh = Q - (Qnew - bvirt) + (enow - bvirt);
  56. enow = e[++eindex];
  57. Q = Qnew;
  58. if (hh !== 0) {
  59. h[hindex++] = hh;
  60. }
  61. }
  62. while (findex < flen) {
  63. Qnew = Q + fnow;
  64. bvirt = Qnew - Q;
  65. hh = Q - (Qnew - bvirt) + (fnow - bvirt);
  66. fnow = f[++findex];
  67. Q = Qnew;
  68. if (hh !== 0) {
  69. h[hindex++] = hh;
  70. }
  71. }
  72. if (Q !== 0 || hindex === 0) {
  73. h[hindex++] = Q;
  74. }
  75. return hindex;
  76. }
  77. function estimate(elen, e) {
  78. var Q = e[0];
  79. for (var i = 1; i < elen; i++) { Q += e[i]; }
  80. return Q;
  81. }
  82. function vec(n) {
  83. return new Float64Array(n);
  84. }
  85. var ccwerrboundA = (3 + 16 * epsilon) * epsilon;
  86. var ccwerrboundB = (2 + 12 * epsilon) * epsilon;
  87. var ccwerrboundC = (9 + 64 * epsilon) * epsilon * epsilon;
  88. var B = vec(4);
  89. var C1 = vec(8);
  90. var C2 = vec(12);
  91. var D = vec(16);
  92. var u = vec(4);
  93. function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
  94. var acxtail, acytail, bcxtail, bcytail;
  95. var bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
  96. var acx = ax - cx;
  97. var bcx = bx - cx;
  98. var acy = ay - cy;
  99. var bcy = by - cy;
  100. s1 = acx * bcy;
  101. c = splitter * acx;
  102. ahi = c - (c - acx);
  103. alo = acx - ahi;
  104. c = splitter * bcy;
  105. bhi = c - (c - bcy);
  106. blo = bcy - bhi;
  107. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  108. t1 = acy * bcx;
  109. c = splitter * acy;
  110. ahi = c - (c - acy);
  111. alo = acy - ahi;
  112. c = splitter * bcx;
  113. bhi = c - (c - bcx);
  114. blo = bcx - bhi;
  115. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  116. _i = s0 - t0;
  117. bvirt = s0 - _i;
  118. B[0] = s0 - (_i + bvirt) + (bvirt - t0);
  119. _j = s1 + _i;
  120. bvirt = _j - s1;
  121. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  122. _i = _0 - t1;
  123. bvirt = _0 - _i;
  124. B[1] = _0 - (_i + bvirt) + (bvirt - t1);
  125. u3 = _j + _i;
  126. bvirt = u3 - _j;
  127. B[2] = _j - (u3 - bvirt) + (_i - bvirt);
  128. B[3] = u3;
  129. var det = estimate(4, B);
  130. var errbound = ccwerrboundB * detsum;
  131. if (det >= errbound || -det >= errbound) {
  132. return det;
  133. }
  134. bvirt = ax - acx;
  135. acxtail = ax - (acx + bvirt) + (bvirt - cx);
  136. bvirt = bx - bcx;
  137. bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
  138. bvirt = ay - acy;
  139. acytail = ay - (acy + bvirt) + (bvirt - cy);
  140. bvirt = by - bcy;
  141. bcytail = by - (bcy + bvirt) + (bvirt - cy);
  142. if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
  143. return det;
  144. }
  145. errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
  146. det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
  147. if (det >= errbound || -det >= errbound) { return det; }
  148. s1 = acxtail * bcy;
  149. c = splitter * acxtail;
  150. ahi = c - (c - acxtail);
  151. alo = acxtail - ahi;
  152. c = splitter * bcy;
  153. bhi = c - (c - bcy);
  154. blo = bcy - bhi;
  155. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  156. t1 = acytail * bcx;
  157. c = splitter * acytail;
  158. ahi = c - (c - acytail);
  159. alo = acytail - ahi;
  160. c = splitter * bcx;
  161. bhi = c - (c - bcx);
  162. blo = bcx - bhi;
  163. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  164. _i = s0 - t0;
  165. bvirt = s0 - _i;
  166. u[0] = s0 - (_i + bvirt) + (bvirt - t0);
  167. _j = s1 + _i;
  168. bvirt = _j - s1;
  169. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  170. _i = _0 - t1;
  171. bvirt = _0 - _i;
  172. u[1] = _0 - (_i + bvirt) + (bvirt - t1);
  173. u3 = _j + _i;
  174. bvirt = u3 - _j;
  175. u[2] = _j - (u3 - bvirt) + (_i - bvirt);
  176. u[3] = u3;
  177. var C1len = sum(4, B, 4, u, C1);
  178. s1 = acx * bcytail;
  179. c = splitter * acx;
  180. ahi = c - (c - acx);
  181. alo = acx - ahi;
  182. c = splitter * bcytail;
  183. bhi = c - (c - bcytail);
  184. blo = bcytail - bhi;
  185. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  186. t1 = acy * bcxtail;
  187. c = splitter * acy;
  188. ahi = c - (c - acy);
  189. alo = acy - ahi;
  190. c = splitter * bcxtail;
  191. bhi = c - (c - bcxtail);
  192. blo = bcxtail - bhi;
  193. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  194. _i = s0 - t0;
  195. bvirt = s0 - _i;
  196. u[0] = s0 - (_i + bvirt) + (bvirt - t0);
  197. _j = s1 + _i;
  198. bvirt = _j - s1;
  199. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  200. _i = _0 - t1;
  201. bvirt = _0 - _i;
  202. u[1] = _0 - (_i + bvirt) + (bvirt - t1);
  203. u3 = _j + _i;
  204. bvirt = u3 - _j;
  205. u[2] = _j - (u3 - bvirt) + (_i - bvirt);
  206. u[3] = u3;
  207. var C2len = sum(C1len, C1, 4, u, C2);
  208. s1 = acxtail * bcytail;
  209. c = splitter * acxtail;
  210. ahi = c - (c - acxtail);
  211. alo = acxtail - ahi;
  212. c = splitter * bcytail;
  213. bhi = c - (c - bcytail);
  214. blo = bcytail - bhi;
  215. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  216. t1 = acytail * bcxtail;
  217. c = splitter * acytail;
  218. ahi = c - (c - acytail);
  219. alo = acytail - ahi;
  220. c = splitter * bcxtail;
  221. bhi = c - (c - bcxtail);
  222. blo = bcxtail - bhi;
  223. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  224. _i = s0 - t0;
  225. bvirt = s0 - _i;
  226. u[0] = s0 - (_i + bvirt) + (bvirt - t0);
  227. _j = s1 + _i;
  228. bvirt = _j - s1;
  229. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  230. _i = _0 - t1;
  231. bvirt = _0 - _i;
  232. u[1] = _0 - (_i + bvirt) + (bvirt - t1);
  233. u3 = _j + _i;
  234. bvirt = u3 - _j;
  235. u[2] = _j - (u3 - bvirt) + (_i - bvirt);
  236. u[3] = u3;
  237. var Dlen = sum(C2len, C2, 4, u, D);
  238. return D[Dlen - 1];
  239. }
  240. function orient2d(ax, ay, bx, by, cx, cy) {
  241. var detleft = (ay - cy) * (bx - cx);
  242. var detright = (ax - cx) * (by - cy);
  243. var det = detleft - detright;
  244. var detsum = Math.abs(detleft + detright);
  245. if (Math.abs(det) >= ccwerrboundA * detsum) { return det; }
  246. return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
  247. }
  248. function pointInPolygon(p, polygon) {
  249. var i;
  250. var ii;
  251. var k = 0;
  252. var f;
  253. var u1;
  254. var v1;
  255. var u2;
  256. var v2;
  257. var currentP;
  258. var nextP;
  259. var x = p[0];
  260. var y = p[1];
  261. var numContours = polygon.length;
  262. for (i = 0; i < numContours; i++) {
  263. ii = 0;
  264. var contour = polygon[i];
  265. var contourLen = contour.length - 1;
  266. currentP = contour[0];
  267. if (currentP[0] !== contour[contourLen][0] &&
  268. currentP[1] !== contour[contourLen][1]) {
  269. throw new Error('First and last coordinates in a ring must be the same')
  270. }
  271. u1 = currentP[0] - x;
  272. v1 = currentP[1] - y;
  273. for (ii; ii < contourLen; ii++) {
  274. nextP = contour[ii + 1];
  275. u2 = nextP[0] - x;
  276. v2 = nextP[1] - y;
  277. if (v1 === 0 && v2 === 0) {
  278. if ((u2 <= 0 && u1 >= 0) || (u1 <= 0 && u2 >= 0)) { return 0 }
  279. } else if ((v2 >= 0 && v1 <= 0) || (v2 <= 0 && v1 >= 0)) {
  280. f = orient2d(u1, u2, v1, v2, 0, 0);
  281. if (f === 0) { return 0 }
  282. if ((f > 0 && v2 > 0 && v1 <= 0) || (f < 0 && v2 <= 0 && v1 > 0)) { k++; }
  283. }
  284. currentP = nextP;
  285. v1 = v2;
  286. u1 = u2;
  287. }
  288. }
  289. if (k % 2 === 0) { return false }
  290. return true
  291. }
  292. module.exports = pointInPolygon;