mws f9379005b7 feat:初始化 4 mēneši atpakaļ
..
dist f9379005b7 feat:初始化 4 mēneši atpakaļ
LICENSE f9379005b7 feat:初始化 4 mēneši atpakaļ
README.md f9379005b7 feat:初始化 4 mēneši atpakaļ
package.json f9379005b7 feat:初始化 4 mēneši atpakaļ

README.md

@turf/moran-index

MoranIndex

Type: object

Properties

  • moranIndex number the moran's Index of the observed feature set
  • expectedMoranIndex number the moran's Index of the random distribution
  • stdNorm number the standard devitaion of the random distribution
  • zNorm number the z-score of the observe samples with regard to the random distribution

moranIndex

Moran's I measures patterns of attribute values associated with features. The method reveal whether similar values tend to occur near each other, or whether high or low values are interspersed.

Moran's I > 0 means a clusterd pattern. Moran's I < 0 means a dispersed pattern. Moran's I = 0 means a random pattern.

In order to test the significance of the result. The z score is calculated. A positive enough z-score (ex. >1.96) indicates clustering, while a negative enough z-score (ex. <-1.96) indicates a dispersed pattern.

the z-score can be calculated based on a normal or random assumption.

Bibliography*

  1. Moran's I

  2. pysal

  3. Andy Mitchell, The ESRI Guide to GIS Analysis Volume 2: Spatial Measurements & Statistics.

Parameters

  • fc FeatureCollection<any>
  • options Object

    • options.inputField string the property name, must contain numeric values
    • options.threshold number the distance threshold (optional, default 100000)
    • options.p number the Minkowski p-norm distance parameter (optional, default 2)
    • options.binary boolean whether transfrom the distance to binary (optional, default false)
    • options.alpha number the distance decay parameter (optional, default -1)
    • options.standardization boolean wheter row standardization the distance (optional, default true)

Examples

const bbox = [-65, 40, -63, 42];
const dataset = turf.randomPoint(100, { bbox: bbox });

const result = turf.moranIndex(dataset, {
  inputField: 'CRIME',
});

Returns MoranIndex


This module is part of the Turfjs project, an open source module collection dedicated to geographic algorithms. It is maintained in the Turfjs/turf repository, where you can create PRs and issues.

Installation

Install this single module individually:

$ npm install @turf/moran-index

Or install the all-encompassing @turf/turf module that includes all modules as functions:

$ npm install @turf/turf