| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811 |
- // polyclip-ts v0.16.8 Copyright (c) 2022 Luiz Felipe Machado Barboza
- (function (global, factory) {
- typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
- typeof define === 'function' && define.amd ? define(['exports'], factory) :
- (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.polyclip = global.polyclip || {}));
- })(this, (function (exports) { 'use strict';
- var version = "0.16.8";
- var constant = (x) => {
- return () => {
- return x;
- };
- };
- var compare$1 = (eps) => {
- const almostEqual = eps ? (a, b) => b.minus(a).abs().isLessThanOrEqualTo(eps)
- : constant(false);
- return (a, b) => {
- if (almostEqual(a, b))
- return 0;
- return a.comparedTo(b);
- };
- };
- function orient (eps) {
- const almostCollinear = eps ? (area2, ax, ay, cx, cy) => area2.exponentiatedBy(2).isLessThanOrEqualTo(cx.minus(ax).exponentiatedBy(2).plus(cy.minus(ay).exponentiatedBy(2))
- .times(eps))
- : constant(false);
- return (a, b, c) => {
- const ax = a.x, ay = a.y, cx = c.x, cy = c.y;
- const area2 = ay.minus(cy).times(b.x.minus(cx)).minus(ax.minus(cx).times(b.y.minus(cy)));
- if (almostCollinear(area2, ax, ay, cx, cy))
- return 0;
- return area2.comparedTo(0);
- };
- }
- /*
- * bignumber.js v9.1.0
- * A JavaScript library for arbitrary-precision arithmetic.
- * https://github.com/MikeMcl/bignumber.js
- * Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com>
- * MIT Licensed.
- *
- * BigNumber.prototype methods | BigNumber methods
- * |
- * absoluteValue abs | clone
- * comparedTo | config set
- * decimalPlaces dp | DECIMAL_PLACES
- * dividedBy div | ROUNDING_MODE
- * dividedToIntegerBy idiv | EXPONENTIAL_AT
- * exponentiatedBy pow | RANGE
- * integerValue | CRYPTO
- * isEqualTo eq | MODULO_MODE
- * isFinite | POW_PRECISION
- * isGreaterThan gt | FORMAT
- * isGreaterThanOrEqualTo gte | ALPHABET
- * isInteger | isBigNumber
- * isLessThan lt | maximum max
- * isLessThanOrEqualTo lte | minimum min
- * isNaN | random
- * isNegative | sum
- * isPositive |
- * isZero |
- * minus |
- * modulo mod |
- * multipliedBy times |
- * negated |
- * plus |
- * precision sd |
- * shiftedBy |
- * squareRoot sqrt |
- * toExponential |
- * toFixed |
- * toFormat |
- * toFraction |
- * toJSON |
- * toNumber |
- * toPrecision |
- * toString |
- * valueOf |
- *
- */
- var
- isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i,
- mathceil = Math.ceil,
- mathfloor = Math.floor,
- bignumberError = '[BigNumber Error] ',
- tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ',
- BASE = 1e14,
- LOG_BASE = 14,
- MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1
- // MAX_INT32 = 0x7fffffff, // 2^31 - 1
- POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
- SQRT_BASE = 1e7,
- // EDITABLE
- // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
- // the arguments to toExponential, toFixed, toFormat, and toPrecision.
- MAX = 1E9; // 0 to MAX_INT32
- /*
- * Create and return a BigNumber constructor.
- */
- function clone(configObject) {
- var div, convertBase, parseNumeric,
- P = BigNumber.prototype = { constructor: BigNumber, toString: null, valueOf: null },
- ONE = new BigNumber(1),
- //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------
- // The default values below must be integers within the inclusive ranges stated.
- // The values can also be changed at run-time using BigNumber.set.
- // The maximum number of decimal places for operations involving division.
- DECIMAL_PLACES = 20, // 0 to MAX
- // The rounding mode used when rounding to the above decimal places, and when using
- // toExponential, toFixed, toFormat and toPrecision, and round (default value).
- // UP 0 Away from zero.
- // DOWN 1 Towards zero.
- // CEIL 2 Towards +Infinity.
- // FLOOR 3 Towards -Infinity.
- // HALF_UP 4 Towards nearest neighbour. If equidistant, up.
- // HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.
- // HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.
- // HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.
- // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
- ROUNDING_MODE = 4, // 0 to 8
- // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
- // The exponent value at and beneath which toString returns exponential notation.
- // Number type: -7
- TO_EXP_NEG = -7, // 0 to -MAX
- // The exponent value at and above which toString returns exponential notation.
- // Number type: 21
- TO_EXP_POS = 21, // 0 to MAX
- // RANGE : [MIN_EXP, MAX_EXP]
- // The minimum exponent value, beneath which underflow to zero occurs.
- // Number type: -324 (5e-324)
- MIN_EXP = -1e7, // -1 to -MAX
- // The maximum exponent value, above which overflow to Infinity occurs.
- // Number type: 308 (1.7976931348623157e+308)
- // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
- MAX_EXP = 1e7, // 1 to MAX
- // Whether to use cryptographically-secure random number generation, if available.
- CRYPTO = false, // true or false
- // The modulo mode used when calculating the modulus: a mod n.
- // The quotient (q = a / n) is calculated according to the corresponding rounding mode.
- // The remainder (r) is calculated as: r = a - n * q.
- //
- // UP 0 The remainder is positive if the dividend is negative, else is negative.
- // DOWN 1 The remainder has the same sign as the dividend.
- // This modulo mode is commonly known as 'truncated division' and is
- // equivalent to (a % n) in JavaScript.
- // FLOOR 3 The remainder has the same sign as the divisor (Python %).
- // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
- // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)).
- // The remainder is always positive.
- //
- // The truncated division, floored division, Euclidian division and IEEE 754 remainder
- // modes are commonly used for the modulus operation.
- // Although the other rounding modes can also be used, they may not give useful results.
- MODULO_MODE = 1, // 0 to 9
- // The maximum number of significant digits of the result of the exponentiatedBy operation.
- // If POW_PRECISION is 0, there will be unlimited significant digits.
- POW_PRECISION = 0, // 0 to MAX
- // The format specification used by the BigNumber.prototype.toFormat method.
- FORMAT = {
- prefix: '',
- groupSize: 3,
- secondaryGroupSize: 0,
- groupSeparator: ',',
- decimalSeparator: '.',
- fractionGroupSize: 0,
- fractionGroupSeparator: '\xA0', // non-breaking space
- suffix: ''
- },
- // The alphabet used for base conversion. It must be at least 2 characters long, with no '+',
- // '-', '.', whitespace, or repeated character.
- // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
- ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz',
- alphabetHasNormalDecimalDigits = true;
- //------------------------------------------------------------------------------------------
- // CONSTRUCTOR
- /*
- * The BigNumber constructor and exported function.
- * Create and return a new instance of a BigNumber object.
- *
- * v {number|string|BigNumber} A numeric value.
- * [b] {number} The base of v. Integer, 2 to ALPHABET.length inclusive.
- */
- function BigNumber(v, b) {
- var alphabet, c, caseChanged, e, i, isNum, len, str,
- x = this;
- // Enable constructor call without `new`.
- if (!(x instanceof BigNumber)) return new BigNumber(v, b);
- if (b == null) {
- if (v && v._isBigNumber === true) {
- x.s = v.s;
- if (!v.c || v.e > MAX_EXP) {
- x.c = x.e = null;
- } else if (v.e < MIN_EXP) {
- x.c = [x.e = 0];
- } else {
- x.e = v.e;
- x.c = v.c.slice();
- }
- return;
- }
- if ((isNum = typeof v == 'number') && v * 0 == 0) {
- // Use `1 / n` to handle minus zero also.
- x.s = 1 / v < 0 ? (v = -v, -1) : 1;
- // Fast path for integers, where n < 2147483648 (2**31).
- if (v === ~~v) {
- for (e = 0, i = v; i >= 10; i /= 10, e++);
- if (e > MAX_EXP) {
- x.c = x.e = null;
- } else {
- x.e = e;
- x.c = [v];
- }
- return;
- }
- str = String(v);
- } else {
- if (!isNumeric.test(str = String(v))) return parseNumeric(x, str, isNum);
- x.s = str.charCodeAt(0) == 45 ? (str = str.slice(1), -1) : 1;
- }
- // Decimal point?
- if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
- // Exponential form?
- if ((i = str.search(/e/i)) > 0) {
- // Determine exponent.
- if (e < 0) e = i;
- e += +str.slice(i + 1);
- str = str.substring(0, i);
- } else if (e < 0) {
- // Integer.
- e = str.length;
- }
- } else {
- // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
- intCheck(b, 2, ALPHABET.length, 'Base');
- // Allow exponential notation to be used with base 10 argument, while
- // also rounding to DECIMAL_PLACES as with other bases.
- if (b == 10 && alphabetHasNormalDecimalDigits) {
- x = new BigNumber(v);
- return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE);
- }
- str = String(v);
- if (isNum = typeof v == 'number') {
- // Avoid potential interpretation of Infinity and NaN as base 44+ values.
- if (v * 0 != 0) return parseNumeric(x, str, isNum, b);
- x.s = 1 / v < 0 ? (str = str.slice(1), -1) : 1;
- // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
- if (BigNumber.DEBUG && str.replace(/^0\.0*|\./, '').length > 15) {
- throw Error
- (tooManyDigits + v);
- }
- } else {
- x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1;
- }
- alphabet = ALPHABET.slice(0, b);
- e = i = 0;
- // Check that str is a valid base b number.
- // Don't use RegExp, so alphabet can contain special characters.
- for (len = str.length; i < len; i++) {
- if (alphabet.indexOf(c = str.charAt(i)) < 0) {
- if (c == '.') {
- // If '.' is not the first character and it has not be found before.
- if (i > e) {
- e = len;
- continue;
- }
- } else if (!caseChanged) {
- // Allow e.g. hexadecimal 'FF' as well as 'ff'.
- if (str == str.toUpperCase() && (str = str.toLowerCase()) ||
- str == str.toLowerCase() && (str = str.toUpperCase())) {
- caseChanged = true;
- i = -1;
- e = 0;
- continue;
- }
- }
- return parseNumeric(x, String(v), isNum, b);
- }
- }
- // Prevent later check for length on converted number.
- isNum = false;
- str = convertBase(str, b, 10, x.s);
- // Decimal point?
- if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
- else e = str.length;
- }
- // Determine leading zeros.
- for (i = 0; str.charCodeAt(i) === 48; i++);
- // Determine trailing zeros.
- for (len = str.length; str.charCodeAt(--len) === 48;);
- if (str = str.slice(i, ++len)) {
- len -= i;
- // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
- if (isNum && BigNumber.DEBUG &&
- len > 15 && (v > MAX_SAFE_INTEGER || v !== mathfloor(v))) {
- throw Error
- (tooManyDigits + (x.s * v));
- }
- // Overflow?
- if ((e = e - i - 1) > MAX_EXP) {
- // Infinity.
- x.c = x.e = null;
- // Underflow?
- } else if (e < MIN_EXP) {
- // Zero.
- x.c = [x.e = 0];
- } else {
- x.e = e;
- x.c = [];
- // Transform base
- // e is the base 10 exponent.
- // i is where to slice str to get the first element of the coefficient array.
- i = (e + 1) % LOG_BASE;
- if (e < 0) i += LOG_BASE; // i < 1
- if (i < len) {
- if (i) x.c.push(+str.slice(0, i));
- for (len -= LOG_BASE; i < len;) {
- x.c.push(+str.slice(i, i += LOG_BASE));
- }
- i = LOG_BASE - (str = str.slice(i)).length;
- } else {
- i -= len;
- }
- for (; i--; str += '0');
- x.c.push(+str);
- }
- } else {
- // Zero.
- x.c = [x.e = 0];
- }
- }
- // CONSTRUCTOR PROPERTIES
- BigNumber.clone = clone;
- BigNumber.ROUND_UP = 0;
- BigNumber.ROUND_DOWN = 1;
- BigNumber.ROUND_CEIL = 2;
- BigNumber.ROUND_FLOOR = 3;
- BigNumber.ROUND_HALF_UP = 4;
- BigNumber.ROUND_HALF_DOWN = 5;
- BigNumber.ROUND_HALF_EVEN = 6;
- BigNumber.ROUND_HALF_CEIL = 7;
- BigNumber.ROUND_HALF_FLOOR = 8;
- BigNumber.EUCLID = 9;
- /*
- * Configure infrequently-changing library-wide settings.
- *
- * Accept an object with the following optional properties (if the value of a property is
- * a number, it must be an integer within the inclusive range stated):
- *
- * DECIMAL_PLACES {number} 0 to MAX
- * ROUNDING_MODE {number} 0 to 8
- * EXPONENTIAL_AT {number|number[]} -MAX to MAX or [-MAX to 0, 0 to MAX]
- * RANGE {number|number[]} -MAX to MAX (not zero) or [-MAX to -1, 1 to MAX]
- * CRYPTO {boolean} true or false
- * MODULO_MODE {number} 0 to 9
- * POW_PRECISION {number} 0 to MAX
- * ALPHABET {string} A string of two or more unique characters which does
- * not contain '.'.
- * FORMAT {object} An object with some of the following properties:
- * prefix {string}
- * groupSize {number}
- * secondaryGroupSize {number}
- * groupSeparator {string}
- * decimalSeparator {string}
- * fractionGroupSize {number}
- * fractionGroupSeparator {string}
- * suffix {string}
- *
- * (The values assigned to the above FORMAT object properties are not checked for validity.)
- *
- * E.g.
- * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
- *
- * Ignore properties/parameters set to null or undefined, except for ALPHABET.
- *
- * Return an object with the properties current values.
- */
- BigNumber.config = BigNumber.set = function (obj) {
- var p, v;
- if (obj != null) {
- if (typeof obj == 'object') {
- // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
- // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'
- if (obj.hasOwnProperty(p = 'DECIMAL_PLACES')) {
- v = obj[p];
- intCheck(v, 0, MAX, p);
- DECIMAL_PLACES = v;
- }
- // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
- // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'
- if (obj.hasOwnProperty(p = 'ROUNDING_MODE')) {
- v = obj[p];
- intCheck(v, 0, 8, p);
- ROUNDING_MODE = v;
- }
- // EXPONENTIAL_AT {number|number[]}
- // Integer, -MAX to MAX inclusive or
- // [integer -MAX to 0 inclusive, 0 to MAX inclusive].
- // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'
- if (obj.hasOwnProperty(p = 'EXPONENTIAL_AT')) {
- v = obj[p];
- if (v && v.pop) {
- intCheck(v[0], -MAX, 0, p);
- intCheck(v[1], 0, MAX, p);
- TO_EXP_NEG = v[0];
- TO_EXP_POS = v[1];
- } else {
- intCheck(v, -MAX, MAX, p);
- TO_EXP_NEG = -(TO_EXP_POS = v < 0 ? -v : v);
- }
- }
- // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
- // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
- // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'
- if (obj.hasOwnProperty(p = 'RANGE')) {
- v = obj[p];
- if (v && v.pop) {
- intCheck(v[0], -MAX, -1, p);
- intCheck(v[1], 1, MAX, p);
- MIN_EXP = v[0];
- MAX_EXP = v[1];
- } else {
- intCheck(v, -MAX, MAX, p);
- if (v) {
- MIN_EXP = -(MAX_EXP = v < 0 ? -v : v);
- } else {
- throw Error
- (bignumberError + p + ' cannot be zero: ' + v);
- }
- }
- }
- // CRYPTO {boolean} true or false.
- // '[BigNumber Error] CRYPTO not true or false: {v}'
- // '[BigNumber Error] crypto unavailable'
- if (obj.hasOwnProperty(p = 'CRYPTO')) {
- v = obj[p];
- if (v === !!v) {
- if (v) {
- if (typeof crypto != 'undefined' && crypto &&
- (crypto.getRandomValues || crypto.randomBytes)) {
- CRYPTO = v;
- } else {
- CRYPTO = !v;
- throw Error
- (bignumberError + 'crypto unavailable');
- }
- } else {
- CRYPTO = v;
- }
- } else {
- throw Error
- (bignumberError + p + ' not true or false: ' + v);
- }
- }
- // MODULO_MODE {number} Integer, 0 to 9 inclusive.
- // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'
- if (obj.hasOwnProperty(p = 'MODULO_MODE')) {
- v = obj[p];
- intCheck(v, 0, 9, p);
- MODULO_MODE = v;
- }
- // POW_PRECISION {number} Integer, 0 to MAX inclusive.
- // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'
- if (obj.hasOwnProperty(p = 'POW_PRECISION')) {
- v = obj[p];
- intCheck(v, 0, MAX, p);
- POW_PRECISION = v;
- }
- // FORMAT {object}
- // '[BigNumber Error] FORMAT not an object: {v}'
- if (obj.hasOwnProperty(p = 'FORMAT')) {
- v = obj[p];
- if (typeof v == 'object') FORMAT = v;
- else throw Error
- (bignumberError + p + ' not an object: ' + v);
- }
- // ALPHABET {string}
- // '[BigNumber Error] ALPHABET invalid: {v}'
- if (obj.hasOwnProperty(p = 'ALPHABET')) {
- v = obj[p];
- // Disallow if less than two characters,
- // or if it contains '+', '-', '.', whitespace, or a repeated character.
- if (typeof v == 'string' && !/^.?$|[+\-.\s]|(.).*\1/.test(v)) {
- alphabetHasNormalDecimalDigits = v.slice(0, 10) == '0123456789';
- ALPHABET = v;
- } else {
- throw Error
- (bignumberError + p + ' invalid: ' + v);
- }
- }
- } else {
- // '[BigNumber Error] Object expected: {v}'
- throw Error
- (bignumberError + 'Object expected: ' + obj);
- }
- }
- return {
- DECIMAL_PLACES: DECIMAL_PLACES,
- ROUNDING_MODE: ROUNDING_MODE,
- EXPONENTIAL_AT: [TO_EXP_NEG, TO_EXP_POS],
- RANGE: [MIN_EXP, MAX_EXP],
- CRYPTO: CRYPTO,
- MODULO_MODE: MODULO_MODE,
- POW_PRECISION: POW_PRECISION,
- FORMAT: FORMAT,
- ALPHABET: ALPHABET
- };
- };
- /*
- * Return true if v is a BigNumber instance, otherwise return false.
- *
- * If BigNumber.DEBUG is true, throw if a BigNumber instance is not well-formed.
- *
- * v {any}
- *
- * '[BigNumber Error] Invalid BigNumber: {v}'
- */
- BigNumber.isBigNumber = function (v) {
- if (!v || v._isBigNumber !== true) return false;
- if (!BigNumber.DEBUG) return true;
- var i, n,
- c = v.c,
- e = v.e,
- s = v.s;
- out: if ({}.toString.call(c) == '[object Array]') {
- if ((s === 1 || s === -1) && e >= -MAX && e <= MAX && e === mathfloor(e)) {
- // If the first element is zero, the BigNumber value must be zero.
- if (c[0] === 0) {
- if (e === 0 && c.length === 1) return true;
- break out;
- }
- // Calculate number of digits that c[0] should have, based on the exponent.
- i = (e + 1) % LOG_BASE;
- if (i < 1) i += LOG_BASE;
- // Calculate number of digits of c[0].
- //if (Math.ceil(Math.log(c[0] + 1) / Math.LN10) == i) {
- if (String(c[0]).length == i) {
- for (i = 0; i < c.length; i++) {
- n = c[i];
- if (n < 0 || n >= BASE || n !== mathfloor(n)) break out;
- }
- // Last element cannot be zero, unless it is the only element.
- if (n !== 0) return true;
- }
- }
- // Infinity/NaN
- } else if (c === null && e === null && (s === null || s === 1 || s === -1)) {
- return true;
- }
- throw Error
- (bignumberError + 'Invalid BigNumber: ' + v);
- };
- /*
- * Return a new BigNumber whose value is the maximum of the arguments.
- *
- * arguments {number|string|BigNumber}
- */
- BigNumber.maximum = BigNumber.max = function () {
- return maxOrMin(arguments, P.lt);
- };
- /*
- * Return a new BigNumber whose value is the minimum of the arguments.
- *
- * arguments {number|string|BigNumber}
- */
- BigNumber.minimum = BigNumber.min = function () {
- return maxOrMin(arguments, P.gt);
- };
- /*
- * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
- * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
- * zeros are produced).
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}'
- * '[BigNumber Error] crypto unavailable'
- */
- BigNumber.random = (function () {
- var pow2_53 = 0x20000000000000;
- // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
- // Check if Math.random() produces more than 32 bits of randomness.
- // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
- // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
- var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
- ? function () { return mathfloor(Math.random() * pow2_53); }
- : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
- (Math.random() * 0x800000 | 0); };
- return function (dp) {
- var a, b, e, k, v,
- i = 0,
- c = [],
- rand = new BigNumber(ONE);
- if (dp == null) dp = DECIMAL_PLACES;
- else intCheck(dp, 0, MAX);
- k = mathceil(dp / LOG_BASE);
- if (CRYPTO) {
- // Browsers supporting crypto.getRandomValues.
- if (crypto.getRandomValues) {
- a = crypto.getRandomValues(new Uint32Array(k *= 2));
- for (; i < k;) {
- // 53 bits:
- // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
- // 11111 11111111 11111111 11111111 11100000 00000000 00000000
- // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
- // 11111 11111111 11111111
- // 0x20000 is 2^21.
- v = a[i] * 0x20000 + (a[i + 1] >>> 11);
- // Rejection sampling:
- // 0 <= v < 9007199254740992
- // Probability that v >= 9e15, is
- // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
- if (v >= 9e15) {
- b = crypto.getRandomValues(new Uint32Array(2));
- a[i] = b[0];
- a[i + 1] = b[1];
- } else {
- // 0 <= v <= 8999999999999999
- // 0 <= (v % 1e14) <= 99999999999999
- c.push(v % 1e14);
- i += 2;
- }
- }
- i = k / 2;
- // Node.js supporting crypto.randomBytes.
- } else if (crypto.randomBytes) {
- // buffer
- a = crypto.randomBytes(k *= 7);
- for (; i < k;) {
- // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
- // 0x100000000 is 2^32, 0x1000000 is 2^24
- // 11111 11111111 11111111 11111111 11111111 11111111 11111111
- // 0 <= v < 9007199254740992
- v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) +
- (a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) +
- (a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6];
- if (v >= 9e15) {
- crypto.randomBytes(7).copy(a, i);
- } else {
- // 0 <= (v % 1e14) <= 99999999999999
- c.push(v % 1e14);
- i += 7;
- }
- }
- i = k / 7;
- } else {
- CRYPTO = false;
- throw Error
- (bignumberError + 'crypto unavailable');
- }
- }
- // Use Math.random.
- if (!CRYPTO) {
- for (; i < k;) {
- v = random53bitInt();
- if (v < 9e15) c[i++] = v % 1e14;
- }
- }
- k = c[--i];
- dp %= LOG_BASE;
- // Convert trailing digits to zeros according to dp.
- if (k && dp) {
- v = POWS_TEN[LOG_BASE - dp];
- c[i] = mathfloor(k / v) * v;
- }
- // Remove trailing elements which are zero.
- for (; c[i] === 0; c.pop(), i--);
- // Zero?
- if (i < 0) {
- c = [e = 0];
- } else {
- // Remove leading elements which are zero and adjust exponent accordingly.
- for (e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);
- // Count the digits of the first element of c to determine leading zeros, and...
- for (i = 1, v = c[0]; v >= 10; v /= 10, i++);
- // adjust the exponent accordingly.
- if (i < LOG_BASE) e -= LOG_BASE - i;
- }
- rand.e = e;
- rand.c = c;
- return rand;
- };
- })();
- /*
- * Return a BigNumber whose value is the sum of the arguments.
- *
- * arguments {number|string|BigNumber}
- */
- BigNumber.sum = function () {
- var i = 1,
- args = arguments,
- sum = new BigNumber(args[0]);
- for (; i < args.length;) sum = sum.plus(args[i++]);
- return sum;
- };
- // PRIVATE FUNCTIONS
- // Called by BigNumber and BigNumber.prototype.toString.
- convertBase = (function () {
- var decimal = '0123456789';
- /*
- * Convert string of baseIn to an array of numbers of baseOut.
- * Eg. toBaseOut('255', 10, 16) returns [15, 15].
- * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5].
- */
- function toBaseOut(str, baseIn, baseOut, alphabet) {
- var j,
- arr = [0],
- arrL,
- i = 0,
- len = str.length;
- for (; i < len;) {
- for (arrL = arr.length; arrL--; arr[arrL] *= baseIn);
- arr[0] += alphabet.indexOf(str.charAt(i++));
- for (j = 0; j < arr.length; j++) {
- if (arr[j] > baseOut - 1) {
- if (arr[j + 1] == null) arr[j + 1] = 0;
- arr[j + 1] += arr[j] / baseOut | 0;
- arr[j] %= baseOut;
- }
- }
- }
- return arr.reverse();
- }
- // Convert a numeric string of baseIn to a numeric string of baseOut.
- // If the caller is toString, we are converting from base 10 to baseOut.
- // If the caller is BigNumber, we are converting from baseIn to base 10.
- return function (str, baseIn, baseOut, sign, callerIsToString) {
- var alphabet, d, e, k, r, x, xc, y,
- i = str.indexOf('.'),
- dp = DECIMAL_PLACES,
- rm = ROUNDING_MODE;
- // Non-integer.
- if (i >= 0) {
- k = POW_PRECISION;
- // Unlimited precision.
- POW_PRECISION = 0;
- str = str.replace('.', '');
- y = new BigNumber(baseIn);
- x = y.pow(str.length - i);
- POW_PRECISION = k;
- // Convert str as if an integer, then restore the fraction part by dividing the
- // result by its base raised to a power.
- y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e, '0'),
- 10, baseOut, decimal);
- y.e = y.c.length;
- }
- // Convert the number as integer.
- xc = toBaseOut(str, baseIn, baseOut, callerIsToString
- ? (alphabet = ALPHABET, decimal)
- : (alphabet = decimal, ALPHABET));
- // xc now represents str as an integer and converted to baseOut. e is the exponent.
- e = k = xc.length;
- // Remove trailing zeros.
- for (; xc[--k] == 0; xc.pop());
- // Zero?
- if (!xc[0]) return alphabet.charAt(0);
- // Does str represent an integer? If so, no need for the division.
- if (i < 0) {
- --e;
- } else {
- x.c = xc;
- x.e = e;
- // The sign is needed for correct rounding.
- x.s = sign;
- x = div(x, y, dp, rm, baseOut);
- xc = x.c;
- r = x.r;
- e = x.e;
- }
- // xc now represents str converted to baseOut.
- // THe index of the rounding digit.
- d = e + dp + 1;
- // The rounding digit: the digit to the right of the digit that may be rounded up.
- i = xc[d];
- // Look at the rounding digits and mode to determine whether to round up.
- k = baseOut / 2;
- r = r || d < 0 || xc[d + 1] != null;
- r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
- : i > k || i == k &&(rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
- rm == (x.s < 0 ? 8 : 7));
- // If the index of the rounding digit is not greater than zero, or xc represents
- // zero, then the result of the base conversion is zero or, if rounding up, a value
- // such as 0.00001.
- if (d < 1 || !xc[0]) {
- // 1^-dp or 0
- str = r ? toFixedPoint(alphabet.charAt(1), -dp, alphabet.charAt(0)) : alphabet.charAt(0);
- } else {
- // Truncate xc to the required number of decimal places.
- xc.length = d;
- // Round up?
- if (r) {
- // Rounding up may mean the previous digit has to be rounded up and so on.
- for (--baseOut; ++xc[--d] > baseOut;) {
- xc[d] = 0;
- if (!d) {
- ++e;
- xc = [1].concat(xc);
- }
- }
- }
- // Determine trailing zeros.
- for (k = xc.length; !xc[--k];);
- // E.g. [4, 11, 15] becomes 4bf.
- for (i = 0, str = ''; i <= k; str += alphabet.charAt(xc[i++]));
- // Add leading zeros, decimal point and trailing zeros as required.
- str = toFixedPoint(str, e, alphabet.charAt(0));
- }
- // The caller will add the sign.
- return str;
- };
- })();
- // Perform division in the specified base. Called by div and convertBase.
- div = (function () {
- // Assume non-zero x and k.
- function multiply(x, k, base) {
- var m, temp, xlo, xhi,
- carry = 0,
- i = x.length,
- klo = k % SQRT_BASE,
- khi = k / SQRT_BASE | 0;
- for (x = x.slice(); i--;) {
- xlo = x[i] % SQRT_BASE;
- xhi = x[i] / SQRT_BASE | 0;
- m = khi * xlo + xhi * klo;
- temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry;
- carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi;
- x[i] = temp % base;
- }
- if (carry) x = [carry].concat(x);
- return x;
- }
- function compare(a, b, aL, bL) {
- var i, cmp;
- if (aL != bL) {
- cmp = aL > bL ? 1 : -1;
- } else {
- for (i = cmp = 0; i < aL; i++) {
- if (a[i] != b[i]) {
- cmp = a[i] > b[i] ? 1 : -1;
- break;
- }
- }
- }
- return cmp;
- }
- function subtract(a, b, aL, base) {
- var i = 0;
- // Subtract b from a.
- for (; aL--;) {
- a[aL] -= i;
- i = a[aL] < b[aL] ? 1 : 0;
- a[aL] = i * base + a[aL] - b[aL];
- }
- // Remove leading zeros.
- for (; !a[0] && a.length > 1; a.splice(0, 1));
- }
- // x: dividend, y: divisor.
- return function (x, y, dp, rm, base) {
- var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
- yL, yz,
- s = x.s == y.s ? 1 : -1,
- xc = x.c,
- yc = y.c;
- // Either NaN, Infinity or 0?
- if (!xc || !xc[0] || !yc || !yc[0]) {
- return new BigNumber(
- // Return NaN if either NaN, or both Infinity or 0.
- !x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN :
- // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
- xc && xc[0] == 0 || !yc ? s * 0 : s / 0
- );
- }
- q = new BigNumber(s);
- qc = q.c = [];
- e = x.e - y.e;
- s = dp + e + 1;
- if (!base) {
- base = BASE;
- e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE);
- s = s / LOG_BASE | 0;
- }
- // Result exponent may be one less then the current value of e.
- // The coefficients of the BigNumbers from convertBase may have trailing zeros.
- for (i = 0; yc[i] == (xc[i] || 0); i++);
- if (yc[i] > (xc[i] || 0)) e--;
- if (s < 0) {
- qc.push(1);
- more = true;
- } else {
- xL = xc.length;
- yL = yc.length;
- i = 0;
- s += 2;
- // Normalise xc and yc so highest order digit of yc is >= base / 2.
- n = mathfloor(base / (yc[0] + 1));
- // Not necessary, but to handle odd bases where yc[0] == (base / 2) - 1.
- // if (n > 1 || n++ == 1 && yc[0] < base / 2) {
- if (n > 1) {
- yc = multiply(yc, n, base);
- xc = multiply(xc, n, base);
- yL = yc.length;
- xL = xc.length;
- }
- xi = yL;
- rem = xc.slice(0, yL);
- remL = rem.length;
- // Add zeros to make remainder as long as divisor.
- for (; remL < yL; rem[remL++] = 0);
- yz = yc.slice();
- yz = [0].concat(yz);
- yc0 = yc[0];
- if (yc[1] >= base / 2) yc0++;
- // Not necessary, but to prevent trial digit n > base, when using base 3.
- // else if (base == 3 && yc0 == 1) yc0 = 1 + 1e-15;
- do {
- n = 0;
- // Compare divisor and remainder.
- cmp = compare(yc, rem, yL, remL);
- // If divisor < remainder.
- if (cmp < 0) {
- // Calculate trial digit, n.
- rem0 = rem[0];
- if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);
- // n is how many times the divisor goes into the current remainder.
- n = mathfloor(rem0 / yc0);
- // Algorithm:
- // product = divisor multiplied by trial digit (n).
- // Compare product and remainder.
- // If product is greater than remainder:
- // Subtract divisor from product, decrement trial digit.
- // Subtract product from remainder.
- // If product was less than remainder at the last compare:
- // Compare new remainder and divisor.
- // If remainder is greater than divisor:
- // Subtract divisor from remainder, increment trial digit.
- if (n > 1) {
- // n may be > base only when base is 3.
- if (n >= base) n = base - 1;
- // product = divisor * trial digit.
- prod = multiply(yc, n, base);
- prodL = prod.length;
- remL = rem.length;
- // Compare product and remainder.
- // If product > remainder then trial digit n too high.
- // n is 1 too high about 5% of the time, and is not known to have
- // ever been more than 1 too high.
- while (compare(prod, rem, prodL, remL) == 1) {
- n--;
- // Subtract divisor from product.
- subtract(prod, yL < prodL ? yz : yc, prodL, base);
- prodL = prod.length;
- cmp = 1;
- }
- } else {
- // n is 0 or 1, cmp is -1.
- // If n is 0, there is no need to compare yc and rem again below,
- // so change cmp to 1 to avoid it.
- // If n is 1, leave cmp as -1, so yc and rem are compared again.
- if (n == 0) {
- // divisor < remainder, so n must be at least 1.
- cmp = n = 1;
- }
- // product = divisor
- prod = yc.slice();
- prodL = prod.length;
- }
- if (prodL < remL) prod = [0].concat(prod);
- // Subtract product from remainder.
- subtract(rem, prod, remL, base);
- remL = rem.length;
- // If product was < remainder.
- if (cmp == -1) {
- // Compare divisor and new remainder.
- // If divisor < new remainder, subtract divisor from remainder.
- // Trial digit n too low.
- // n is 1 too low about 5% of the time, and very rarely 2 too low.
- while (compare(yc, rem, yL, remL) < 1) {
- n++;
- // Subtract divisor from remainder.
- subtract(rem, yL < remL ? yz : yc, remL, base);
- remL = rem.length;
- }
- }
- } else if (cmp === 0) {
- n++;
- rem = [0];
- } // else cmp === 1 and n will be 0
- // Add the next digit, n, to the result array.
- qc[i++] = n;
- // Update the remainder.
- if (rem[0]) {
- rem[remL++] = xc[xi] || 0;
- } else {
- rem = [xc[xi]];
- remL = 1;
- }
- } while ((xi++ < xL || rem[0] != null) && s--);
- more = rem[0] != null;
- // Leading zero?
- if (!qc[0]) qc.splice(0, 1);
- }
- if (base == BASE) {
- // To calculate q.e, first get the number of digits of qc[0].
- for (i = 1, s = qc[0]; s >= 10; s /= 10, i++);
- round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more);
- // Caller is convertBase.
- } else {
- q.e = e;
- q.r = +more;
- }
- return q;
- };
- })();
- /*
- * Return a string representing the value of BigNumber n in fixed-point or exponential
- * notation rounded to the specified decimal places or significant digits.
- *
- * n: a BigNumber.
- * i: the index of the last digit required (i.e. the digit that may be rounded up).
- * rm: the rounding mode.
- * id: 1 (toExponential) or 2 (toPrecision).
- */
- function format(n, i, rm, id) {
- var c0, e, ne, len, str;
- if (rm == null) rm = ROUNDING_MODE;
- else intCheck(rm, 0, 8);
- if (!n.c) return n.toString();
- c0 = n.c[0];
- ne = n.e;
- if (i == null) {
- str = coeffToString(n.c);
- str = id == 1 || id == 2 && (ne <= TO_EXP_NEG || ne >= TO_EXP_POS)
- ? toExponential(str, ne)
- : toFixedPoint(str, ne, '0');
- } else {
- n = round(new BigNumber(n), i, rm);
- // n.e may have changed if the value was rounded up.
- e = n.e;
- str = coeffToString(n.c);
- len = str.length;
- // toPrecision returns exponential notation if the number of significant digits
- // specified is less than the number of digits necessary to represent the integer
- // part of the value in fixed-point notation.
- // Exponential notation.
- if (id == 1 || id == 2 && (i <= e || e <= TO_EXP_NEG)) {
- // Append zeros?
- for (; len < i; str += '0', len++);
- str = toExponential(str, e);
- // Fixed-point notation.
- } else {
- i -= ne;
- str = toFixedPoint(str, e, '0');
- // Append zeros?
- if (e + 1 > len) {
- if (--i > 0) for (str += '.'; i--; str += '0');
- } else {
- i += e - len;
- if (i > 0) {
- if (e + 1 == len) str += '.';
- for (; i--; str += '0');
- }
- }
- }
- }
- return n.s < 0 && c0 ? '-' + str : str;
- }
- // Handle BigNumber.max and BigNumber.min.
- function maxOrMin(args, method) {
- var n,
- i = 1,
- m = new BigNumber(args[0]);
- for (; i < args.length; i++) {
- n = new BigNumber(args[i]);
- // If any number is NaN, return NaN.
- if (!n.s) {
- m = n;
- break;
- } else if (method.call(m, n)) {
- m = n;
- }
- }
- return m;
- }
- /*
- * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
- * Called by minus, plus and times.
- */
- function normalise(n, c, e) {
- var i = 1,
- j = c.length;
- // Remove trailing zeros.
- for (; !c[--j]; c.pop());
- // Calculate the base 10 exponent. First get the number of digits of c[0].
- for (j = c[0]; j >= 10; j /= 10, i++);
- // Overflow?
- if ((e = i + e * LOG_BASE - 1) > MAX_EXP) {
- // Infinity.
- n.c = n.e = null;
- // Underflow?
- } else if (e < MIN_EXP) {
- // Zero.
- n.c = [n.e = 0];
- } else {
- n.e = e;
- n.c = c;
- }
- return n;
- }
- // Handle values that fail the validity test in BigNumber.
- parseNumeric = (function () {
- var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
- dotAfter = /^([^.]+)\.$/,
- dotBefore = /^\.([^.]+)$/,
- isInfinityOrNaN = /^-?(Infinity|NaN)$/,
- whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;
- return function (x, str, isNum, b) {
- var base,
- s = isNum ? str : str.replace(whitespaceOrPlus, '');
- // No exception on ±Infinity or NaN.
- if (isInfinityOrNaN.test(s)) {
- x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
- } else {
- if (!isNum) {
- // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
- s = s.replace(basePrefix, function (m, p1, p2) {
- base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
- return !b || b == base ? p1 : m;
- });
- if (b) {
- base = b;
- // E.g. '1.' to '1', '.1' to '0.1'
- s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1');
- }
- if (str != s) return new BigNumber(s, base);
- }
- // '[BigNumber Error] Not a number: {n}'
- // '[BigNumber Error] Not a base {b} number: {n}'
- if (BigNumber.DEBUG) {
- throw Error
- (bignumberError + 'Not a' + (b ? ' base ' + b : '') + ' number: ' + str);
- }
- // NaN
- x.s = null;
- }
- x.c = x.e = null;
- }
- })();
- /*
- * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
- * If r is truthy, it is known that there are more digits after the rounding digit.
- */
- function round(x, sd, rm, r) {
- var d, i, j, k, n, ni, rd,
- xc = x.c,
- pows10 = POWS_TEN;
- // if x is not Infinity or NaN...
- if (xc) {
- // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
- // n is a base 1e14 number, the value of the element of array x.c containing rd.
- // ni is the index of n within x.c.
- // d is the number of digits of n.
- // i is the index of rd within n including leading zeros.
- // j is the actual index of rd within n (if < 0, rd is a leading zero).
- out: {
- // Get the number of digits of the first element of xc.
- for (d = 1, k = xc[0]; k >= 10; k /= 10, d++);
- i = sd - d;
- // If the rounding digit is in the first element of xc...
- if (i < 0) {
- i += LOG_BASE;
- j = sd;
- n = xc[ni = 0];
- // Get the rounding digit at index j of n.
- rd = n / pows10[d - j - 1] % 10 | 0;
- } else {
- ni = mathceil((i + 1) / LOG_BASE);
- if (ni >= xc.length) {
- if (r) {
- // Needed by sqrt.
- for (; xc.length <= ni; xc.push(0));
- n = rd = 0;
- d = 1;
- i %= LOG_BASE;
- j = i - LOG_BASE + 1;
- } else {
- break out;
- }
- } else {
- n = k = xc[ni];
- // Get the number of digits of n.
- for (d = 1; k >= 10; k /= 10, d++);
- // Get the index of rd within n.
- i %= LOG_BASE;
- // Get the index of rd within n, adjusted for leading zeros.
- // The number of leading zeros of n is given by LOG_BASE - d.
- j = i - LOG_BASE + d;
- // Get the rounding digit at index j of n.
- rd = j < 0 ? 0 : n / pows10[d - j - 1] % 10 | 0;
- }
- }
- r = r || sd < 0 ||
- // Are there any non-zero digits after the rounding digit?
- // The expression n % pows10[d - j - 1] returns all digits of n to the right
- // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
- xc[ni + 1] != null || (j < 0 ? n : n % pows10[d - j - 1]);
- r = rm < 4
- ? (rd || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
- : rd > 5 || rd == 5 && (rm == 4 || r || rm == 6 &&
- // Check whether the digit to the left of the rounding digit is odd.
- ((i > 0 ? j > 0 ? n / pows10[d - j] : 0 : xc[ni - 1]) % 10) & 1 ||
- rm == (x.s < 0 ? 8 : 7));
- if (sd < 1 || !xc[0]) {
- xc.length = 0;
- if (r) {
- // Convert sd to decimal places.
- sd -= x.e + 1;
- // 1, 0.1, 0.01, 0.001, 0.0001 etc.
- xc[0] = pows10[(LOG_BASE - sd % LOG_BASE) % LOG_BASE];
- x.e = -sd || 0;
- } else {
- // Zero.
- xc[0] = x.e = 0;
- }
- return x;
- }
- // Remove excess digits.
- if (i == 0) {
- xc.length = ni;
- k = 1;
- ni--;
- } else {
- xc.length = ni + 1;
- k = pows10[LOG_BASE - i];
- // E.g. 56700 becomes 56000 if 7 is the rounding digit.
- // j > 0 means i > number of leading zeros of n.
- xc[ni] = j > 0 ? mathfloor(n / pows10[d - j] % pows10[j]) * k : 0;
- }
- // Round up?
- if (r) {
- for (; ;) {
- // If the digit to be rounded up is in the first element of xc...
- if (ni == 0) {
- // i will be the length of xc[0] before k is added.
- for (i = 1, j = xc[0]; j >= 10; j /= 10, i++);
- j = xc[0] += k;
- for (k = 1; j >= 10; j /= 10, k++);
- // if i != k the length has increased.
- if (i != k) {
- x.e++;
- if (xc[0] == BASE) xc[0] = 1;
- }
- break;
- } else {
- xc[ni] += k;
- if (xc[ni] != BASE) break;
- xc[ni--] = 0;
- k = 1;
- }
- }
- }
- // Remove trailing zeros.
- for (i = xc.length; xc[--i] === 0; xc.pop());
- }
- // Overflow? Infinity.
- if (x.e > MAX_EXP) {
- x.c = x.e = null;
- // Underflow? Zero.
- } else if (x.e < MIN_EXP) {
- x.c = [x.e = 0];
- }
- }
- return x;
- }
- function valueOf(n) {
- var str,
- e = n.e;
- if (e === null) return n.toString();
- str = coeffToString(n.c);
- str = e <= TO_EXP_NEG || e >= TO_EXP_POS
- ? toExponential(str, e)
- : toFixedPoint(str, e, '0');
- return n.s < 0 ? '-' + str : str;
- }
- // PROTOTYPE/INSTANCE METHODS
- /*
- * Return a new BigNumber whose value is the absolute value of this BigNumber.
- */
- P.absoluteValue = P.abs = function () {
- var x = new BigNumber(this);
- if (x.s < 0) x.s = 1;
- return x;
- };
- /*
- * Return
- * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
- * -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
- * 0 if they have the same value,
- * or null if the value of either is NaN.
- */
- P.comparedTo = function (y, b) {
- return compare(this, new BigNumber(y, b));
- };
- /*
- * If dp is undefined or null or true or false, return the number of decimal places of the
- * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
- *
- * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this
- * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or
- * ROUNDING_MODE if rm is omitted.
- *
- * [dp] {number} Decimal places: integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
- */
- P.decimalPlaces = P.dp = function (dp, rm) {
- var c, n, v,
- x = this;
- if (dp != null) {
- intCheck(dp, 0, MAX);
- if (rm == null) rm = ROUNDING_MODE;
- else intCheck(rm, 0, 8);
- return round(new BigNumber(x), dp + x.e + 1, rm);
- }
- if (!(c = x.c)) return null;
- n = ((v = c.length - 1) - bitFloor(this.e / LOG_BASE)) * LOG_BASE;
- // Subtract the number of trailing zeros of the last number.
- if (v = c[v]) for (; v % 10 == 0; v /= 10, n--);
- if (n < 0) n = 0;
- return n;
- };
- /*
- * n / 0 = I
- * n / N = N
- * n / I = 0
- * 0 / n = 0
- * 0 / 0 = N
- * 0 / N = N
- * 0 / I = 0
- * N / n = N
- * N / 0 = N
- * N / N = N
- * N / I = N
- * I / n = I
- * I / 0 = I
- * I / N = N
- * I / I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
- * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
- */
- P.dividedBy = P.div = function (y, b) {
- return div(this, new BigNumber(y, b), DECIMAL_PLACES, ROUNDING_MODE);
- };
- /*
- * Return a new BigNumber whose value is the integer part of dividing the value of this
- * BigNumber by the value of BigNumber(y, b).
- */
- P.dividedToIntegerBy = P.idiv = function (y, b) {
- return div(this, new BigNumber(y, b), 0, 1);
- };
- /*
- * Return a BigNumber whose value is the value of this BigNumber exponentiated by n.
- *
- * If m is present, return the result modulo m.
- * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
- * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE.
- *
- * The modular power operation works efficiently when x, n, and m are integers, otherwise it
- * is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0.
- *
- * n {number|string|BigNumber} The exponent. An integer.
- * [m] {number|string|BigNumber} The modulus.
- *
- * '[BigNumber Error] Exponent not an integer: {n}'
- */
- P.exponentiatedBy = P.pow = function (n, m) {
- var half, isModExp, i, k, more, nIsBig, nIsNeg, nIsOdd, y,
- x = this;
- n = new BigNumber(n);
- // Allow NaN and ±Infinity, but not other non-integers.
- if (n.c && !n.isInteger()) {
- throw Error
- (bignumberError + 'Exponent not an integer: ' + valueOf(n));
- }
- if (m != null) m = new BigNumber(m);
- // Exponent of MAX_SAFE_INTEGER is 15.
- nIsBig = n.e > 14;
- // If x is NaN, ±Infinity, ±0 or ±1, or n is ±Infinity, NaN or ±0.
- if (!x.c || !x.c[0] || x.c[0] == 1 && !x.e && x.c.length == 1 || !n.c || !n.c[0]) {
- // The sign of the result of pow when x is negative depends on the evenness of n.
- // If +n overflows to ±Infinity, the evenness of n would be not be known.
- y = new BigNumber(Math.pow(+valueOf(x), nIsBig ? 2 - isOdd(n) : +valueOf(n)));
- return m ? y.mod(m) : y;
- }
- nIsNeg = n.s < 0;
- if (m) {
- // x % m returns NaN if abs(m) is zero, or m is NaN.
- if (m.c ? !m.c[0] : !m.s) return new BigNumber(NaN);
- isModExp = !nIsNeg && x.isInteger() && m.isInteger();
- if (isModExp) x = x.mod(m);
- // Overflow to ±Infinity: >=2**1e10 or >=1.0000024**1e15.
- // Underflow to ±0: <=0.79**1e10 or <=0.9999975**1e15.
- } else if (n.e > 9 && (x.e > 0 || x.e < -1 || (x.e == 0
- // [1, 240000000]
- ? x.c[0] > 1 || nIsBig && x.c[1] >= 24e7
- // [80000000000000] [99999750000000]
- : x.c[0] < 8e13 || nIsBig && x.c[0] <= 9999975e7))) {
- // If x is negative and n is odd, k = -0, else k = 0.
- k = x.s < 0 && isOdd(n) ? -0 : 0;
- // If x >= 1, k = ±Infinity.
- if (x.e > -1) k = 1 / k;
- // If n is negative return ±0, else return ±Infinity.
- return new BigNumber(nIsNeg ? 1 / k : k);
- } else if (POW_PRECISION) {
- // Truncating each coefficient array to a length of k after each multiplication
- // equates to truncating significant digits to POW_PRECISION + [28, 41],
- // i.e. there will be a minimum of 28 guard digits retained.
- k = mathceil(POW_PRECISION / LOG_BASE + 2);
- }
- if (nIsBig) {
- half = new BigNumber(0.5);
- if (nIsNeg) n.s = 1;
- nIsOdd = isOdd(n);
- } else {
- i = Math.abs(+valueOf(n));
- nIsOdd = i % 2;
- }
- y = new BigNumber(ONE);
- // Performs 54 loop iterations for n of 9007199254740991.
- for (; ;) {
- if (nIsOdd) {
- y = y.times(x);
- if (!y.c) break;
- if (k) {
- if (y.c.length > k) y.c.length = k;
- } else if (isModExp) {
- y = y.mod(m); //y = y.minus(div(y, m, 0, MODULO_MODE).times(m));
- }
- }
- if (i) {
- i = mathfloor(i / 2);
- if (i === 0) break;
- nIsOdd = i % 2;
- } else {
- n = n.times(half);
- round(n, n.e + 1, 1);
- if (n.e > 14) {
- nIsOdd = isOdd(n);
- } else {
- i = +valueOf(n);
- if (i === 0) break;
- nIsOdd = i % 2;
- }
- }
- x = x.times(x);
- if (k) {
- if (x.c && x.c.length > k) x.c.length = k;
- } else if (isModExp) {
- x = x.mod(m); //x = x.minus(div(x, m, 0, MODULO_MODE).times(m));
- }
- }
- if (isModExp) return y;
- if (nIsNeg) y = ONE.div(y);
- return m ? y.mod(m) : k ? round(y, POW_PRECISION, ROUNDING_MODE, more) : y;
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer
- * using rounding mode rm, or ROUNDING_MODE if rm is omitted.
- *
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}'
- */
- P.integerValue = function (rm) {
- var n = new BigNumber(this);
- if (rm == null) rm = ROUNDING_MODE;
- else intCheck(rm, 0, 8);
- return round(n, n.e + 1, rm);
- };
- /*
- * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
- * otherwise return false.
- */
- P.isEqualTo = P.eq = function (y, b) {
- return compare(this, new BigNumber(y, b)) === 0;
- };
- /*
- * Return true if the value of this BigNumber is a finite number, otherwise return false.
- */
- P.isFinite = function () {
- return !!this.c;
- };
- /*
- * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
- * otherwise return false.
- */
- P.isGreaterThan = P.gt = function (y, b) {
- return compare(this, new BigNumber(y, b)) > 0;
- };
- /*
- * Return true if the value of this BigNumber is greater than or equal to the value of
- * BigNumber(y, b), otherwise return false.
- */
- P.isGreaterThanOrEqualTo = P.gte = function (y, b) {
- return (b = compare(this, new BigNumber(y, b))) === 1 || b === 0;
- };
- /*
- * Return true if the value of this BigNumber is an integer, otherwise return false.
- */
- P.isInteger = function () {
- return !!this.c && bitFloor(this.e / LOG_BASE) > this.c.length - 2;
- };
- /*
- * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
- * otherwise return false.
- */
- P.isLessThan = P.lt = function (y, b) {
- return compare(this, new BigNumber(y, b)) < 0;
- };
- /*
- * Return true if the value of this BigNumber is less than or equal to the value of
- * BigNumber(y, b), otherwise return false.
- */
- P.isLessThanOrEqualTo = P.lte = function (y, b) {
- return (b = compare(this, new BigNumber(y, b))) === -1 || b === 0;
- };
- /*
- * Return true if the value of this BigNumber is NaN, otherwise return false.
- */
- P.isNaN = function () {
- return !this.s;
- };
- /*
- * Return true if the value of this BigNumber is negative, otherwise return false.
- */
- P.isNegative = function () {
- return this.s < 0;
- };
- /*
- * Return true if the value of this BigNumber is positive, otherwise return false.
- */
- P.isPositive = function () {
- return this.s > 0;
- };
- /*
- * Return true if the value of this BigNumber is 0 or -0, otherwise return false.
- */
- P.isZero = function () {
- return !!this.c && this.c[0] == 0;
- };
- /*
- * n - 0 = n
- * n - N = N
- * n - I = -I
- * 0 - n = -n
- * 0 - 0 = 0
- * 0 - N = N
- * 0 - I = -I
- * N - n = N
- * N - 0 = N
- * N - N = N
- * N - I = N
- * I - n = I
- * I - 0 = I
- * I - N = N
- * I - I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber minus the value of
- * BigNumber(y, b).
- */
- P.minus = function (y, b) {
- var i, j, t, xLTy,
- x = this,
- a = x.s;
- y = new BigNumber(y, b);
- b = y.s;
- // Either NaN?
- if (!a || !b) return new BigNumber(NaN);
- // Signs differ?
- if (a != b) {
- y.s = -b;
- return x.plus(y);
- }
- var xe = x.e / LOG_BASE,
- ye = y.e / LOG_BASE,
- xc = x.c,
- yc = y.c;
- if (!xe || !ye) {
- // Either Infinity?
- if (!xc || !yc) return xc ? (y.s = -b, y) : new BigNumber(yc ? x : NaN);
- // Either zero?
- if (!xc[0] || !yc[0]) {
- // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
- return yc[0] ? (y.s = -b, y) : new BigNumber(xc[0] ? x :
- // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
- ROUNDING_MODE == 3 ? -0 : 0);
- }
- }
- xe = bitFloor(xe);
- ye = bitFloor(ye);
- xc = xc.slice();
- // Determine which is the bigger number.
- if (a = xe - ye) {
- if (xLTy = a < 0) {
- a = -a;
- t = xc;
- } else {
- ye = xe;
- t = yc;
- }
- t.reverse();
- // Prepend zeros to equalise exponents.
- for (b = a; b--; t.push(0));
- t.reverse();
- } else {
- // Exponents equal. Check digit by digit.
- j = (xLTy = (a = xc.length) < (b = yc.length)) ? a : b;
- for (a = b = 0; b < j; b++) {
- if (xc[b] != yc[b]) {
- xLTy = xc[b] < yc[b];
- break;
- }
- }
- }
- // x < y? Point xc to the array of the bigger number.
- if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s;
- b = (j = yc.length) - (i = xc.length);
- // Append zeros to xc if shorter.
- // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
- if (b > 0) for (; b--; xc[i++] = 0);
- b = BASE - 1;
- // Subtract yc from xc.
- for (; j > a;) {
- if (xc[--j] < yc[j]) {
- for (i = j; i && !xc[--i]; xc[i] = b);
- --xc[i];
- xc[j] += BASE;
- }
- xc[j] -= yc[j];
- }
- // Remove leading zeros and adjust exponent accordingly.
- for (; xc[0] == 0; xc.splice(0, 1), --ye);
- // Zero?
- if (!xc[0]) {
- // Following IEEE 754 (2008) 6.3,
- // n - n = +0 but n - n = -0 when rounding towards -Infinity.
- y.s = ROUNDING_MODE == 3 ? -1 : 1;
- y.c = [y.e = 0];
- return y;
- }
- // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
- // for finite x and y.
- return normalise(y, xc, ye);
- };
- /*
- * n % 0 = N
- * n % N = N
- * n % I = n
- * 0 % n = 0
- * -0 % n = -0
- * 0 % 0 = N
- * 0 % N = N
- * 0 % I = 0
- * N % n = N
- * N % 0 = N
- * N % N = N
- * N % I = N
- * I % n = N
- * I % 0 = N
- * I % N = N
- * I % I = N
- *
- * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
- * BigNumber(y, b). The result depends on the value of MODULO_MODE.
- */
- P.modulo = P.mod = function (y, b) {
- var q, s,
- x = this;
- y = new BigNumber(y, b);
- // Return NaN if x is Infinity or NaN, or y is NaN or zero.
- if (!x.c || !y.s || y.c && !y.c[0]) {
- return new BigNumber(NaN);
- // Return x if y is Infinity or x is zero.
- } else if (!y.c || x.c && !x.c[0]) {
- return new BigNumber(x);
- }
- if (MODULO_MODE == 9) {
- // Euclidian division: q = sign(y) * floor(x / abs(y))
- // r = x - qy where 0 <= r < abs(y)
- s = y.s;
- y.s = 1;
- q = div(x, y, 0, 3);
- y.s = s;
- q.s *= s;
- } else {
- q = div(x, y, 0, MODULO_MODE);
- }
- y = x.minus(q.times(y));
- // To match JavaScript %, ensure sign of zero is sign of dividend.
- if (!y.c[0] && MODULO_MODE == 1) y.s = x.s;
- return y;
- };
- /*
- * n * 0 = 0
- * n * N = N
- * n * I = I
- * 0 * n = 0
- * 0 * 0 = 0
- * 0 * N = N
- * 0 * I = N
- * N * n = N
- * N * 0 = N
- * N * N = N
- * N * I = N
- * I * n = I
- * I * 0 = N
- * I * N = N
- * I * I = I
- *
- * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value
- * of BigNumber(y, b).
- */
- P.multipliedBy = P.times = function (y, b) {
- var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
- base, sqrtBase,
- x = this,
- xc = x.c,
- yc = (y = new BigNumber(y, b)).c;
- // Either NaN, ±Infinity or ±0?
- if (!xc || !yc || !xc[0] || !yc[0]) {
- // Return NaN if either is NaN, or one is 0 and the other is Infinity.
- if (!x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc) {
- y.c = y.e = y.s = null;
- } else {
- y.s *= x.s;
- // Return ±Infinity if either is ±Infinity.
- if (!xc || !yc) {
- y.c = y.e = null;
- // Return ±0 if either is ±0.
- } else {
- y.c = [0];
- y.e = 0;
- }
- }
- return y;
- }
- e = bitFloor(x.e / LOG_BASE) + bitFloor(y.e / LOG_BASE);
- y.s *= x.s;
- xcL = xc.length;
- ycL = yc.length;
- // Ensure xc points to longer array and xcL to its length.
- if (xcL < ycL) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i;
- // Initialise the result array with zeros.
- for (i = xcL + ycL, zc = []; i--; zc.push(0));
- base = BASE;
- sqrtBase = SQRT_BASE;
- for (i = ycL; --i >= 0;) {
- c = 0;
- ylo = yc[i] % sqrtBase;
- yhi = yc[i] / sqrtBase | 0;
- for (k = xcL, j = i + k; j > i;) {
- xlo = xc[--k] % sqrtBase;
- xhi = xc[k] / sqrtBase | 0;
- m = yhi * xlo + xhi * ylo;
- xlo = ylo * xlo + ((m % sqrtBase) * sqrtBase) + zc[j] + c;
- c = (xlo / base | 0) + (m / sqrtBase | 0) + yhi * xhi;
- zc[j--] = xlo % base;
- }
- zc[j] = c;
- }
- if (c) {
- ++e;
- } else {
- zc.splice(0, 1);
- }
- return normalise(y, zc, e);
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber negated,
- * i.e. multiplied by -1.
- */
- P.negated = function () {
- var x = new BigNumber(this);
- x.s = -x.s || null;
- return x;
- };
- /*
- * n + 0 = n
- * n + N = N
- * n + I = I
- * 0 + n = n
- * 0 + 0 = 0
- * 0 + N = N
- * 0 + I = I
- * N + n = N
- * N + 0 = N
- * N + N = N
- * N + I = N
- * I + n = I
- * I + 0 = I
- * I + N = N
- * I + I = I
- *
- * Return a new BigNumber whose value is the value of this BigNumber plus the value of
- * BigNumber(y, b).
- */
- P.plus = function (y, b) {
- var t,
- x = this,
- a = x.s;
- y = new BigNumber(y, b);
- b = y.s;
- // Either NaN?
- if (!a || !b) return new BigNumber(NaN);
- // Signs differ?
- if (a != b) {
- y.s = -b;
- return x.minus(y);
- }
- var xe = x.e / LOG_BASE,
- ye = y.e / LOG_BASE,
- xc = x.c,
- yc = y.c;
- if (!xe || !ye) {
- // Return ±Infinity if either ±Infinity.
- if (!xc || !yc) return new BigNumber(a / 0);
- // Either zero?
- // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
- if (!xc[0] || !yc[0]) return yc[0] ? y : new BigNumber(xc[0] ? x : a * 0);
- }
- xe = bitFloor(xe);
- ye = bitFloor(ye);
- xc = xc.slice();
- // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
- if (a = xe - ye) {
- if (a > 0) {
- ye = xe;
- t = yc;
- } else {
- a = -a;
- t = xc;
- }
- t.reverse();
- for (; a--; t.push(0));
- t.reverse();
- }
- a = xc.length;
- b = yc.length;
- // Point xc to the longer array, and b to the shorter length.
- if (a - b < 0) t = yc, yc = xc, xc = t, b = a;
- // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
- for (a = 0; b;) {
- a = (xc[--b] = xc[b] + yc[b] + a) / BASE | 0;
- xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;
- }
- if (a) {
- xc = [a].concat(xc);
- ++ye;
- }
- // No need to check for zero, as +x + +y != 0 && -x + -y != 0
- // ye = MAX_EXP + 1 possible
- return normalise(y, xc, ye);
- };
- /*
- * If sd is undefined or null or true or false, return the number of significant digits of
- * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
- * If sd is true include integer-part trailing zeros in the count.
- *
- * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this
- * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or
- * ROUNDING_MODE if rm is omitted.
- *
- * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive.
- * boolean: whether to count integer-part trailing zeros: true or false.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
- */
- P.precision = P.sd = function (sd, rm) {
- var c, n, v,
- x = this;
- if (sd != null && sd !== !!sd) {
- intCheck(sd, 1, MAX);
- if (rm == null) rm = ROUNDING_MODE;
- else intCheck(rm, 0, 8);
- return round(new BigNumber(x), sd, rm);
- }
- if (!(c = x.c)) return null;
- v = c.length - 1;
- n = v * LOG_BASE + 1;
- if (v = c[v]) {
- // Subtract the number of trailing zeros of the last element.
- for (; v % 10 == 0; v /= 10, n--);
- // Add the number of digits of the first element.
- for (v = c[0]; v >= 10; v /= 10, n++);
- }
- if (sd && x.e + 1 > n) n = x.e + 1;
- return n;
- };
- /*
- * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
- * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
- *
- * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}'
- */
- P.shiftedBy = function (k) {
- intCheck(k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER);
- return this.times('1e' + k);
- };
- /*
- * sqrt(-n) = N
- * sqrt(N) = N
- * sqrt(-I) = N
- * sqrt(I) = I
- * sqrt(0) = 0
- * sqrt(-0) = -0
- *
- * Return a new BigNumber whose value is the square root of the value of this BigNumber,
- * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
- */
- P.squareRoot = P.sqrt = function () {
- var m, n, r, rep, t,
- x = this,
- c = x.c,
- s = x.s,
- e = x.e,
- dp = DECIMAL_PLACES + 4,
- half = new BigNumber('0.5');
- // Negative/NaN/Infinity/zero?
- if (s !== 1 || !c || !c[0]) {
- return new BigNumber(!s || s < 0 && (!c || c[0]) ? NaN : c ? x : 1 / 0);
- }
- // Initial estimate.
- s = Math.sqrt(+valueOf(x));
- // Math.sqrt underflow/overflow?
- // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
- if (s == 0 || s == 1 / 0) {
- n = coeffToString(c);
- if ((n.length + e) % 2 == 0) n += '0';
- s = Math.sqrt(+n);
- e = bitFloor((e + 1) / 2) - (e < 0 || e % 2);
- if (s == 1 / 0) {
- n = '5e' + e;
- } else {
- n = s.toExponential();
- n = n.slice(0, n.indexOf('e') + 1) + e;
- }
- r = new BigNumber(n);
- } else {
- r = new BigNumber(s + '');
- }
- // Check for zero.
- // r could be zero if MIN_EXP is changed after the this value was created.
- // This would cause a division by zero (x/t) and hence Infinity below, which would cause
- // coeffToString to throw.
- if (r.c[0]) {
- e = r.e;
- s = e + dp;
- if (s < 3) s = 0;
- // Newton-Raphson iteration.
- for (; ;) {
- t = r;
- r = half.times(t.plus(div(x, t, dp, 1)));
- if (coeffToString(t.c).slice(0, s) === (n = coeffToString(r.c)).slice(0, s)) {
- // The exponent of r may here be one less than the final result exponent,
- // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
- // are indexed correctly.
- if (r.e < e) --s;
- n = n.slice(s - 3, s + 1);
- // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
- // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
- // iteration.
- if (n == '9999' || !rep && n == '4999') {
- // On the first iteration only, check to see if rounding up gives the
- // exact result as the nines may infinitely repeat.
- if (!rep) {
- round(t, t.e + DECIMAL_PLACES + 2, 0);
- if (t.times(t).eq(x)) {
- r = t;
- break;
- }
- }
- dp += 4;
- s += 4;
- rep = 1;
- } else {
- // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
- // result. If not, then there are further digits and m will be truthy.
- if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
- // Truncate to the first rounding digit.
- round(r, r.e + DECIMAL_PLACES + 2, 1);
- m = !r.times(r).eq(x);
- }
- break;
- }
- }
- }
- }
- return round(r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m);
- };
- /*
- * Return a string representing the value of this BigNumber in exponential notation and
- * rounded using ROUNDING_MODE to dp fixed decimal places.
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
- */
- P.toExponential = function (dp, rm) {
- if (dp != null) {
- intCheck(dp, 0, MAX);
- dp++;
- }
- return format(this, dp, rm, 1);
- };
- /*
- * Return a string representing the value of this BigNumber in fixed-point notation rounding
- * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
- *
- * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
- * but e.g. (-0.00001).toFixed(0) is '-0'.
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
- */
- P.toFixed = function (dp, rm) {
- if (dp != null) {
- intCheck(dp, 0, MAX);
- dp = dp + this.e + 1;
- }
- return format(this, dp, rm);
- };
- /*
- * Return a string representing the value of this BigNumber in fixed-point notation rounded
- * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
- * of the format or FORMAT object (see BigNumber.set).
- *
- * The formatting object may contain some or all of the properties shown below.
- *
- * FORMAT = {
- * prefix: '',
- * groupSize: 3,
- * secondaryGroupSize: 0,
- * groupSeparator: ',',
- * decimalSeparator: '.',
- * fractionGroupSize: 0,
- * fractionGroupSeparator: '\xA0', // non-breaking space
- * suffix: ''
- * };
- *
- * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- * [format] {object} Formatting options. See FORMAT pbject above.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
- * '[BigNumber Error] Argument not an object: {format}'
- */
- P.toFormat = function (dp, rm, format) {
- var str,
- x = this;
- if (format == null) {
- if (dp != null && rm && typeof rm == 'object') {
- format = rm;
- rm = null;
- } else if (dp && typeof dp == 'object') {
- format = dp;
- dp = rm = null;
- } else {
- format = FORMAT;
- }
- } else if (typeof format != 'object') {
- throw Error
- (bignumberError + 'Argument not an object: ' + format);
- }
- str = x.toFixed(dp, rm);
- if (x.c) {
- var i,
- arr = str.split('.'),
- g1 = +format.groupSize,
- g2 = +format.secondaryGroupSize,
- groupSeparator = format.groupSeparator || '',
- intPart = arr[0],
- fractionPart = arr[1],
- isNeg = x.s < 0,
- intDigits = isNeg ? intPart.slice(1) : intPart,
- len = intDigits.length;
- if (g2) i = g1, g1 = g2, g2 = i, len -= i;
- if (g1 > 0 && len > 0) {
- i = len % g1 || g1;
- intPart = intDigits.substr(0, i);
- for (; i < len; i += g1) intPart += groupSeparator + intDigits.substr(i, g1);
- if (g2 > 0) intPart += groupSeparator + intDigits.slice(i);
- if (isNeg) intPart = '-' + intPart;
- }
- str = fractionPart
- ? intPart + (format.decimalSeparator || '') + ((g2 = +format.fractionGroupSize)
- ? fractionPart.replace(new RegExp('\\d{' + g2 + '}\\B', 'g'),
- '$&' + (format.fractionGroupSeparator || ''))
- : fractionPart)
- : intPart;
- }
- return (format.prefix || '') + str + (format.suffix || '');
- };
- /*
- * Return an array of two BigNumbers representing the value of this BigNumber as a simple
- * fraction with an integer numerator and an integer denominator.
- * The denominator will be a positive non-zero value less than or equal to the specified
- * maximum denominator. If a maximum denominator is not specified, the denominator will be
- * the lowest value necessary to represent the number exactly.
- *
- * [md] {number|string|BigNumber} Integer >= 1, or Infinity. The maximum denominator.
- *
- * '[BigNumber Error] Argument {not an integer|out of range} : {md}'
- */
- P.toFraction = function (md) {
- var d, d0, d1, d2, e, exp, n, n0, n1, q, r, s,
- x = this,
- xc = x.c;
- if (md != null) {
- n = new BigNumber(md);
- // Throw if md is less than one or is not an integer, unless it is Infinity.
- if (!n.isInteger() && (n.c || n.s !== 1) || n.lt(ONE)) {
- throw Error
- (bignumberError + 'Argument ' +
- (n.isInteger() ? 'out of range: ' : 'not an integer: ') + valueOf(n));
- }
- }
- if (!xc) return new BigNumber(x);
- d = new BigNumber(ONE);
- n1 = d0 = new BigNumber(ONE);
- d1 = n0 = new BigNumber(ONE);
- s = coeffToString(xc);
- // Determine initial denominator.
- // d is a power of 10 and the minimum max denominator that specifies the value exactly.
- e = d.e = s.length - x.e - 1;
- d.c[0] = POWS_TEN[(exp = e % LOG_BASE) < 0 ? LOG_BASE + exp : exp];
- md = !md || n.comparedTo(d) > 0 ? (e > 0 ? d : n1) : n;
- exp = MAX_EXP;
- MAX_EXP = 1 / 0;
- n = new BigNumber(s);
- // n0 = d1 = 0
- n0.c[0] = 0;
- for (; ;) {
- q = div(n, d, 0, 1);
- d2 = d0.plus(q.times(d1));
- if (d2.comparedTo(md) == 1) break;
- d0 = d1;
- d1 = d2;
- n1 = n0.plus(q.times(d2 = n1));
- n0 = d2;
- d = n.minus(q.times(d2 = d));
- n = d2;
- }
- d2 = div(md.minus(d0), d1, 0, 1);
- n0 = n0.plus(d2.times(n1));
- d0 = d0.plus(d2.times(d1));
- n0.s = n1.s = x.s;
- e = e * 2;
- // Determine which fraction is closer to x, n0/d0 or n1/d1
- r = div(n1, d1, e, ROUNDING_MODE).minus(x).abs().comparedTo(
- div(n0, d0, e, ROUNDING_MODE).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0];
- MAX_EXP = exp;
- return r;
- };
- /*
- * Return the value of this BigNumber converted to a number primitive.
- */
- P.toNumber = function () {
- return +valueOf(this);
- };
- /*
- * Return a string representing the value of this BigNumber rounded to sd significant digits
- * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
- * necessary to represent the integer part of the value in fixed-point notation, then use
- * exponential notation.
- *
- * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
- * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
- *
- * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
- */
- P.toPrecision = function (sd, rm) {
- if (sd != null) intCheck(sd, 1, MAX);
- return format(this, sd, rm, 2);
- };
- /*
- * Return a string representing the value of this BigNumber in base b, or base 10 if b is
- * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
- * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
- * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
- * TO_EXP_NEG, return exponential notation.
- *
- * [b] {number} Integer, 2 to ALPHABET.length inclusive.
- *
- * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
- */
- P.toString = function (b) {
- var str,
- n = this,
- s = n.s,
- e = n.e;
- // Infinity or NaN?
- if (e === null) {
- if (s) {
- str = 'Infinity';
- if (s < 0) str = '-' + str;
- } else {
- str = 'NaN';
- }
- } else {
- if (b == null) {
- str = e <= TO_EXP_NEG || e >= TO_EXP_POS
- ? toExponential(coeffToString(n.c), e)
- : toFixedPoint(coeffToString(n.c), e, '0');
- } else if (b === 10 && alphabetHasNormalDecimalDigits) {
- n = round(new BigNumber(n), DECIMAL_PLACES + e + 1, ROUNDING_MODE);
- str = toFixedPoint(coeffToString(n.c), n.e, '0');
- } else {
- intCheck(b, 2, ALPHABET.length, 'Base');
- str = convertBase(toFixedPoint(coeffToString(n.c), e, '0'), 10, b, s, true);
- }
- if (s < 0 && n.c[0]) str = '-' + str;
- }
- return str;
- };
- /*
- * Return as toString, but do not accept a base argument, and include the minus sign for
- * negative zero.
- */
- P.valueOf = P.toJSON = function () {
- return valueOf(this);
- };
- P._isBigNumber = true;
- P[Symbol.toStringTag] = 'BigNumber';
- // Node.js v10.12.0+
- P[Symbol.for('nodejs.util.inspect.custom')] = P.valueOf;
- if (configObject != null) BigNumber.set(configObject);
- return BigNumber;
- }
- // PRIVATE HELPER FUNCTIONS
- // These functions don't need access to variables,
- // e.g. DECIMAL_PLACES, in the scope of the `clone` function above.
- function bitFloor(n) {
- var i = n | 0;
- return n > 0 || n === i ? i : i - 1;
- }
- // Return a coefficient array as a string of base 10 digits.
- function coeffToString(a) {
- var s, z,
- i = 1,
- j = a.length,
- r = a[0] + '';
- for (; i < j;) {
- s = a[i++] + '';
- z = LOG_BASE - s.length;
- for (; z--; s = '0' + s);
- r += s;
- }
- // Determine trailing zeros.
- for (j = r.length; r.charCodeAt(--j) === 48;);
- return r.slice(0, j + 1 || 1);
- }
- // Compare the value of BigNumbers x and y.
- function compare(x, y) {
- var a, b,
- xc = x.c,
- yc = y.c,
- i = x.s,
- j = y.s,
- k = x.e,
- l = y.e;
- // Either NaN?
- if (!i || !j) return null;
- a = xc && !xc[0];
- b = yc && !yc[0];
- // Either zero?
- if (a || b) return a ? b ? 0 : -j : i;
- // Signs differ?
- if (i != j) return i;
- a = i < 0;
- b = k == l;
- // Either Infinity?
- if (!xc || !yc) return b ? 0 : !xc ^ a ? 1 : -1;
- // Compare exponents.
- if (!b) return k > l ^ a ? 1 : -1;
- j = (k = xc.length) < (l = yc.length) ? k : l;
- // Compare digit by digit.
- for (i = 0; i < j; i++) if (xc[i] != yc[i]) return xc[i] > yc[i] ^ a ? 1 : -1;
- // Compare lengths.
- return k == l ? 0 : k > l ^ a ? 1 : -1;
- }
- /*
- * Check that n is a primitive number, an integer, and in range, otherwise throw.
- */
- function intCheck(n, min, max, name) {
- if (n < min || n > max || n !== mathfloor(n)) {
- throw Error
- (bignumberError + (name || 'Argument') + (typeof n == 'number'
- ? n < min || n > max ? ' out of range: ' : ' not an integer: '
- : ' not a primitive number: ') + String(n));
- }
- }
- // Assumes finite n.
- function isOdd(n) {
- var k = n.c.length - 1;
- return bitFloor(n.e / LOG_BASE) == k && n.c[k] % 2 != 0;
- }
- function toExponential(str, e) {
- return (str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str) +
- (e < 0 ? 'e' : 'e+') + e;
- }
- function toFixedPoint(str, e, z) {
- var len, zs;
- // Negative exponent?
- if (e < 0) {
- // Prepend zeros.
- for (zs = z + '.'; ++e; zs += z);
- str = zs + str;
- // Positive exponent
- } else {
- len = str.length;
- // Append zeros.
- if (++e > len) {
- for (zs = z, e -= len; --e; zs += z);
- str += zs;
- } else if (e < len) {
- str = str.slice(0, e) + '.' + str.slice(e);
- }
- }
- return str;
- }
- // EXPORT
- var BigNumber = clone();
- // src/index.ts
- var SplayTreeNode = class {
- key;
- left = null;
- right = null;
- constructor(key) {
- this.key = key;
- }
- };
- var SplayTreeSetNode = class extends SplayTreeNode {
- constructor(key) {
- super(key);
- }
- };
- var SplayTree = class {
- size = 0;
- modificationCount = 0;
- splayCount = 0;
- splay(key) {
- const root = this.root;
- if (root == null) {
- this.compare(key, key);
- return -1;
- }
- let right = null;
- let newTreeRight = null;
- let left = null;
- let newTreeLeft = null;
- let current = root;
- const compare = this.compare;
- let comp;
- while (true) {
- comp = compare(current.key, key);
- if (comp > 0) {
- let currentLeft = current.left;
- if (currentLeft == null) break;
- comp = compare(currentLeft.key, key);
- if (comp > 0) {
- current.left = currentLeft.right;
- currentLeft.right = current;
- current = currentLeft;
- currentLeft = current.left;
- if (currentLeft == null) break;
- }
- if (right == null) {
- newTreeRight = current;
- } else {
- right.left = current;
- }
- right = current;
- current = currentLeft;
- } else if (comp < 0) {
- let currentRight = current.right;
- if (currentRight == null) break;
- comp = compare(currentRight.key, key);
- if (comp < 0) {
- current.right = currentRight.left;
- currentRight.left = current;
- current = currentRight;
- currentRight = current.right;
- if (currentRight == null) break;
- }
- if (left == null) {
- newTreeLeft = current;
- } else {
- left.right = current;
- }
- left = current;
- current = currentRight;
- } else {
- break;
- }
- }
- if (left != null) {
- left.right = current.left;
- current.left = newTreeLeft;
- }
- if (right != null) {
- right.left = current.right;
- current.right = newTreeRight;
- }
- if (this.root !== current) {
- this.root = current;
- this.splayCount++;
- }
- return comp;
- }
- splayMin(node) {
- let current = node;
- let nextLeft = current.left;
- while (nextLeft != null) {
- const left = nextLeft;
- current.left = left.right;
- left.right = current;
- current = left;
- nextLeft = current.left;
- }
- return current;
- }
- splayMax(node) {
- let current = node;
- let nextRight = current.right;
- while (nextRight != null) {
- const right = nextRight;
- current.right = right.left;
- right.left = current;
- current = right;
- nextRight = current.right;
- }
- return current;
- }
- _delete(key) {
- if (this.root == null) return null;
- const comp = this.splay(key);
- if (comp != 0) return null;
- let root = this.root;
- const result = root;
- const left = root.left;
- this.size--;
- if (left == null) {
- this.root = root.right;
- } else {
- const right = root.right;
- root = this.splayMax(left);
- root.right = right;
- this.root = root;
- }
- this.modificationCount++;
- return result;
- }
- addNewRoot(node, comp) {
- this.size++;
- this.modificationCount++;
- const root = this.root;
- if (root == null) {
- this.root = node;
- return;
- }
- if (comp < 0) {
- node.left = root;
- node.right = root.right;
- root.right = null;
- } else {
- node.right = root;
- node.left = root.left;
- root.left = null;
- }
- this.root = node;
- }
- _first() {
- const root = this.root;
- if (root == null) return null;
- this.root = this.splayMin(root);
- return this.root;
- }
- _last() {
- const root = this.root;
- if (root == null) return null;
- this.root = this.splayMax(root);
- return this.root;
- }
- clear() {
- this.root = null;
- this.size = 0;
- this.modificationCount++;
- }
- has(key) {
- return this.validKey(key) && this.splay(key) == 0;
- }
- defaultCompare() {
- return (a, b) => a < b ? -1 : a > b ? 1 : 0;
- }
- wrap() {
- return {
- getRoot: () => {
- return this.root;
- },
- setRoot: (root) => {
- this.root = root;
- },
- getSize: () => {
- return this.size;
- },
- getModificationCount: () => {
- return this.modificationCount;
- },
- getSplayCount: () => {
- return this.splayCount;
- },
- setSplayCount: (count) => {
- this.splayCount = count;
- },
- splay: (key) => {
- return this.splay(key);
- },
- has: (key) => {
- return this.has(key);
- }
- };
- }
- };
- var SplayTreeSet = class _SplayTreeSet extends SplayTree {
- root = null;
- compare;
- validKey;
- constructor(compare, isValidKey) {
- super();
- this.compare = compare ?? this.defaultCompare();
- this.validKey = isValidKey ?? ((v) => v != null && v != void 0);
- }
- delete(element) {
- if (!this.validKey(element)) return false;
- return this._delete(element) != null;
- }
- deleteAll(elements) {
- for (const element of elements) {
- this.delete(element);
- }
- }
- forEach(f) {
- const nodes = this[Symbol.iterator]();
- let result;
- while (result = nodes.next(), !result.done) {
- f(result.value, result.value, this);
- }
- }
- add(element) {
- const compare = this.splay(element);
- if (compare != 0) this.addNewRoot(new SplayTreeSetNode(element), compare);
- return this;
- }
- addAndReturn(element) {
- const compare = this.splay(element);
- if (compare != 0) this.addNewRoot(new SplayTreeSetNode(element), compare);
- return this.root.key;
- }
- addAll(elements) {
- for (const element of elements) {
- this.add(element);
- }
- }
- isEmpty() {
- return this.root == null;
- }
- isNotEmpty() {
- return this.root != null;
- }
- single() {
- if (this.size == 0) throw "Bad state: No element";
- if (this.size > 1) throw "Bad state: Too many element";
- return this.root.key;
- }
- first() {
- if (this.size == 0) throw "Bad state: No element";
- return this._first().key;
- }
- last() {
- if (this.size == 0) throw "Bad state: No element";
- return this._last().key;
- }
- lastBefore(element) {
- if (element == null) throw "Invalid arguments(s)";
- if (this.root == null) return null;
- const comp = this.splay(element);
- if (comp < 0) return this.root.key;
- let node = this.root.left;
- if (node == null) return null;
- let nodeRight = node.right;
- while (nodeRight != null) {
- node = nodeRight;
- nodeRight = node.right;
- }
- return node.key;
- }
- firstAfter(element) {
- if (element == null) throw "Invalid arguments(s)";
- if (this.root == null) return null;
- const comp = this.splay(element);
- if (comp > 0) return this.root.key;
- let node = this.root.right;
- if (node == null) return null;
- let nodeLeft = node.left;
- while (nodeLeft != null) {
- node = nodeLeft;
- nodeLeft = node.left;
- }
- return node.key;
- }
- retainAll(elements) {
- const retainSet = new _SplayTreeSet(this.compare, this.validKey);
- const modificationCount = this.modificationCount;
- for (const object of elements) {
- if (modificationCount != this.modificationCount) {
- throw "Concurrent modification during iteration.";
- }
- if (this.validKey(object) && this.splay(object) == 0) {
- retainSet.add(this.root.key);
- }
- }
- if (retainSet.size != this.size) {
- this.root = retainSet.root;
- this.size = retainSet.size;
- this.modificationCount++;
- }
- }
- lookup(object) {
- if (!this.validKey(object)) return null;
- const comp = this.splay(object);
- if (comp != 0) return null;
- return this.root.key;
- }
- intersection(other) {
- const result = new _SplayTreeSet(this.compare, this.validKey);
- for (const element of this) {
- if (other.has(element)) result.add(element);
- }
- return result;
- }
- difference(other) {
- const result = new _SplayTreeSet(this.compare, this.validKey);
- for (const element of this) {
- if (!other.has(element)) result.add(element);
- }
- return result;
- }
- union(other) {
- const u = this.clone();
- u.addAll(other);
- return u;
- }
- clone() {
- const set = new _SplayTreeSet(this.compare, this.validKey);
- set.size = this.size;
- set.root = this.copyNode(this.root);
- return set;
- }
- copyNode(node) {
- if (node == null) return null;
- function copyChildren(node2, dest) {
- let left;
- let right;
- do {
- left = node2.left;
- right = node2.right;
- if (left != null) {
- const newLeft = new SplayTreeSetNode(left.key);
- dest.left = newLeft;
- copyChildren(left, newLeft);
- }
- if (right != null) {
- const newRight = new SplayTreeSetNode(right.key);
- dest.right = newRight;
- node2 = right;
- dest = newRight;
- }
- } while (right != null);
- }
- const result = new SplayTreeSetNode(node.key);
- copyChildren(node, result);
- return result;
- }
- toSet() {
- return this.clone();
- }
- entries() {
- return new SplayTreeSetEntryIterableIterator(this.wrap());
- }
- keys() {
- return this[Symbol.iterator]();
- }
- values() {
- return this[Symbol.iterator]();
- }
- [Symbol.iterator]() {
- return new SplayTreeKeyIterableIterator(this.wrap());
- }
- [Symbol.toStringTag] = "[object Set]";
- };
- var SplayTreeIterableIterator = class {
- tree;
- path = new Array();
- modificationCount = null;
- splayCount;
- constructor(tree) {
- this.tree = tree;
- this.splayCount = tree.getSplayCount();
- }
- [Symbol.iterator]() {
- return this;
- }
- next() {
- if (this.moveNext()) return { done: false, value: this.current() };
- return { done: true, value: null };
- }
- current() {
- if (!this.path.length) return null;
- const node = this.path[this.path.length - 1];
- return this.getValue(node);
- }
- rebuildPath(key) {
- this.path.splice(0, this.path.length);
- this.tree.splay(key);
- this.path.push(this.tree.getRoot());
- this.splayCount = this.tree.getSplayCount();
- }
- findLeftMostDescendent(node) {
- while (node != null) {
- this.path.push(node);
- node = node.left;
- }
- }
- moveNext() {
- if (this.modificationCount != this.tree.getModificationCount()) {
- if (this.modificationCount == null) {
- this.modificationCount = this.tree.getModificationCount();
- let node2 = this.tree.getRoot();
- while (node2 != null) {
- this.path.push(node2);
- node2 = node2.left;
- }
- return this.path.length > 0;
- }
- throw "Concurrent modification during iteration.";
- }
- if (!this.path.length) return false;
- if (this.splayCount != this.tree.getSplayCount()) {
- this.rebuildPath(this.path[this.path.length - 1].key);
- }
- let node = this.path[this.path.length - 1];
- let next = node.right;
- if (next != null) {
- while (next != null) {
- this.path.push(next);
- next = next.left;
- }
- return true;
- }
- this.path.pop();
- while (this.path.length && this.path[this.path.length - 1].right === node) {
- node = this.path.pop();
- }
- return this.path.length > 0;
- }
- };
- var SplayTreeKeyIterableIterator = class extends SplayTreeIterableIterator {
- getValue(node) {
- return node.key;
- }
- };
- var SplayTreeSetEntryIterableIterator = class extends SplayTreeIterableIterator {
- getValue(node) {
- return [node.key, node.key];
- }
- };
- var identity = (x) => {
- return x;
- };
- var snap = (eps) => {
- if (eps) {
- const xTree = new SplayTreeSet(compare$1(eps));
- const yTree = new SplayTreeSet(compare$1(eps));
- const snapCoord = (coord, tree) => {
- return tree.addAndReturn(coord);
- };
- const snap = (v) => {
- return {
- x: snapCoord(v.x, xTree),
- y: snapCoord(v.y, yTree),
- };
- };
- snap({ x: new BigNumber(0), y: new BigNumber(0) });
- return snap;
- }
- return identity;
- };
- const set = (eps) => {
- return {
- set: (eps) => { precision = set(eps); },
- reset: () => set(eps),
- compare: compare$1(eps),
- snap: snap(eps),
- orient: orient(eps)
- };
- };
- let precision = set();
- /**
- * A bounding box has the format:
- *
- * { ll: { x: xmin, y: ymin }, ur: { x: xmax, y: ymax } }
- *
- */
- const isInBbox = (bbox, point) => {
- return (bbox.ll.x.isLessThanOrEqualTo(point.x) &&
- point.x.isLessThanOrEqualTo(bbox.ur.x) &&
- bbox.ll.y.isLessThanOrEqualTo(point.y) &&
- point.y.isLessThanOrEqualTo(bbox.ur.y));
- };
- /* Returns either null, or a bbox (aka an ordered pair of points)
- * If there is only one point of overlap, a bbox with identical points
- * will be returned */
- const getBboxOverlap = (b1, b2) => {
- // check if the bboxes overlap at all
- if (b2.ur.x.isLessThan(b1.ll.x) ||
- b1.ur.x.isLessThan(b2.ll.x) ||
- b2.ur.y.isLessThan(b1.ll.y) ||
- b1.ur.y.isLessThan(b2.ll.y))
- return null;
- // find the middle two X values
- const lowerX = b1.ll.x.isLessThan(b2.ll.x) ? b2.ll.x : b1.ll.x;
- const upperX = b1.ur.x.isLessThan(b2.ur.x) ? b1.ur.x : b2.ur.x;
- // find the middle two Y values
- const lowerY = b1.ll.y.isLessThan(b2.ll.y) ? b2.ll.y : b1.ll.y;
- const upperY = b1.ur.y.isLessThan(b2.ur.y) ? b1.ur.y : b2.ur.y;
- // put those middle values together to get the overlap
- return { ll: { x: lowerX, y: lowerY }, ur: { x: upperX, y: upperY } };
- };
- /* Cross Product of two vectors with first point at origin */
- const crossProduct = (a, b) => a.x.times(b.y).minus(a.y.times(b.x));
- /* Dot Product of two vectors with first point at origin */
- const dotProduct = (a, b) => a.x.times(b.x).plus(a.y.times(b.y));
- const length = (v) => dotProduct(v, v).sqrt();
- /* Get the sine of the angle from pShared -> pAngle to pShaed -> pBase */
- const sineOfAngle = (pShared, pBase, pAngle) => {
- const vBase = { x: pBase.x.minus(pShared.x), y: pBase.y.minus(pShared.y) };
- const vAngle = { x: pAngle.x.minus(pShared.x), y: pAngle.y.minus(pShared.y) };
- return crossProduct(vAngle, vBase).div(length(vAngle)).div(length(vBase));
- };
- /* Get the cosine of the angle from pShared -> pAngle to pShaed -> pBase */
- const cosineOfAngle = (pShared, pBase, pAngle) => {
- const vBase = { x: pBase.x.minus(pShared.x), y: pBase.y.minus(pShared.y) };
- const vAngle = { x: pAngle.x.minus(pShared.x), y: pAngle.y.minus(pShared.y) };
- return dotProduct(vAngle, vBase).div(length(vAngle)).div(length(vBase));
- };
- /* Get the x coordinate where the given line (defined by a point and vector)
- * crosses the horizontal line with the given y coordiante.
- * In the case of parrallel lines (including overlapping ones) returns null. */
- const horizontalIntersection = (pt, v, y) => {
- if (v.y.isZero())
- return null;
- return { x: pt.x.plus((v.x.div(v.y)).times(y.minus(pt.y))), y: y };
- };
- /* Get the y coordinate where the given line (defined by a point and vector)
- * crosses the vertical line with the given x coordiante.
- * In the case of parrallel lines (including overlapping ones) returns null. */
- const verticalIntersection = (pt, v, x) => {
- if (v.x.isZero())
- return null;
- return { x: x, y: pt.y.plus((v.y.div(v.x)).times(x.minus(pt.x))) };
- };
- /* Get the intersection of two lines, each defined by a base point and a vector.
- * In the case of parrallel lines (including overlapping ones) returns null. */
- const intersection$1 = (pt1, v1, pt2, v2) => {
- // take some shortcuts for vertical and horizontal lines
- // this also ensures we don't calculate an intersection and then discover
- // it's actually outside the bounding box of the line
- if (v1.x.isZero())
- return verticalIntersection(pt2, v2, pt1.x);
- if (v2.x.isZero())
- return verticalIntersection(pt1, v1, pt2.x);
- if (v1.y.isZero())
- return horizontalIntersection(pt2, v2, pt1.y);
- if (v2.y.isZero())
- return horizontalIntersection(pt1, v1, pt2.y);
- // General case for non-overlapping segments.
- // This algorithm is based on Schneider and Eberly.
- // http://www.cimec.org.ar/~ncalvo/Schneider_Eberly.pdf - pg 244
- const kross = crossProduct(v1, v2);
- if (kross.isZero())
- return null;
- const ve = { x: pt2.x.minus(pt1.x), y: pt2.y.minus(pt1.y) };
- const d1 = crossProduct(ve, v1).div(kross);
- const d2 = crossProduct(ve, v2).div(kross);
- // take the average of the two calculations to minimize rounding error
- const x1 = pt1.x.plus(d2.times(v1.x)), x2 = pt2.x.plus(d1.times(v2.x));
- const y1 = pt1.y.plus(d2.times(v1.y)), y2 = pt2.y.plus(d1.times(v2.y));
- const x = x1.plus(x2).div(2);
- const y = y1.plus(y2).div(2);
- return { x: x, y: y };
- };
- class SweepEvent {
- point;
- isLeft;
- segment;
- otherSE;
- consumedBy;
- // for ordering sweep events in the sweep event queue
- static compare(a, b) {
- // favor event with a point that the sweep line hits first
- const ptCmp = SweepEvent.comparePoints(a.point, b.point);
- if (ptCmp !== 0)
- return ptCmp;
- // the points are the same, so link them if needed
- if (a.point !== b.point)
- a.link(b);
- // favor right events over left
- if (a.isLeft !== b.isLeft)
- return a.isLeft ? 1 : -1;
- // we have two matching left or right endpoints
- // ordering of this case is the same as for their segments
- return Segment.compare(a.segment, b.segment);
- }
- // for ordering points in sweep line order
- static comparePoints(aPt, bPt) {
- if (aPt.x.isLessThan(bPt.x))
- return -1;
- if (aPt.x.isGreaterThan(bPt.x))
- return 1;
- if (aPt.y.isLessThan(bPt.y))
- return -1;
- if (aPt.y.isGreaterThan(bPt.y))
- return 1;
- return 0;
- }
- // Warning: 'point' input will be modified and re-used (for performance)
- constructor(point, isLeft) {
- if (point.events === undefined)
- point.events = [this];
- else
- point.events.push(this);
- this.point = point;
- this.isLeft = isLeft;
- // this.segment, this.otherSE set by factory
- }
- link(other) {
- if (other.point === this.point) {
- throw new Error("Tried to link already linked events");
- }
- const otherEvents = other.point.events;
- for (let i = 0, iMax = otherEvents.length; i < iMax; i++) {
- const evt = otherEvents[i];
- this.point.events.push(evt);
- evt.point = this.point;
- }
- this.checkForConsuming();
- }
- /* Do a pass over our linked events and check to see if any pair
- * of segments match, and should be consumed. */
- checkForConsuming() {
- // FIXME: The loops in this method run O(n^2) => no good.
- // Maintain little ordered sweep event trees?
- // Can we maintaining an ordering that avoids the need
- // for the re-sorting with getLeftmostComparator in geom-out?
- // Compare each pair of events to see if other events also match
- const numEvents = this.point.events.length;
- for (let i = 0; i < numEvents; i++) {
- const evt1 = this.point.events[i];
- if (evt1.segment.consumedBy !== undefined)
- continue;
- for (let j = i + 1; j < numEvents; j++) {
- const evt2 = this.point.events[j];
- if (evt2.consumedBy !== undefined)
- continue;
- if (evt1.otherSE.point.events !== evt2.otherSE.point.events)
- continue;
- evt1.segment.consume(evt2.segment);
- }
- }
- }
- getAvailableLinkedEvents() {
- // point.events is always of length 2 or greater
- const events = [];
- for (let i = 0, iMax = this.point.events.length; i < iMax; i++) {
- const evt = this.point.events[i];
- if (evt !== this && !evt.segment.ringOut && evt.segment.isInResult()) {
- events.push(evt);
- }
- }
- return events;
- }
- /**
- * Returns a comparator function for sorting linked events that will
- * favor the event that will give us the smallest left-side angle.
- * All ring construction starts as low as possible heading to the right,
- * so by always turning left as sharp as possible we'll get polygons
- * without uncessary loops & holes.
- *
- * The comparator function has a compute cache such that it avoids
- * re-computing already-computed values.
- */
- getLeftmostComparator(baseEvent) {
- const cache = new Map();
- const fillCache = (linkedEvent) => {
- const nextEvent = linkedEvent.otherSE;
- cache.set(linkedEvent, {
- sine: sineOfAngle(this.point, baseEvent.point, nextEvent.point),
- cosine: cosineOfAngle(this.point, baseEvent.point, nextEvent.point),
- });
- };
- return (a, b) => {
- if (!cache.has(a))
- fillCache(a);
- if (!cache.has(b))
- fillCache(b);
- const { sine: asine, cosine: acosine } = cache.get(a);
- const { sine: bsine, cosine: bcosine } = cache.get(b);
- // both on or above x-axis
- if (asine.isGreaterThanOrEqualTo(0) && bsine.isGreaterThanOrEqualTo(0)) {
- if (acosine.isLessThan(bcosine))
- return 1;
- if (acosine.isGreaterThan(bcosine))
- return -1;
- return 0;
- }
- // both below x-axis
- if (asine.isLessThan(0) && bsine.isLessThan(0)) {
- if (acosine.isLessThan(bcosine))
- return -1;
- if (acosine.isGreaterThan(bcosine))
- return 1;
- return 0;
- }
- // one above x-axis, one below
- if (bsine.isLessThan(asine))
- return -1;
- if (bsine.isGreaterThan(asine))
- return 1;
- return 0;
- };
- }
- }
- // Give segments unique ID's to get consistent sorting of
- // segments and sweep events when all else is identical
- let segmentId = 0;
- class Segment {
- id;
- leftSE;
- rightSE;
- rings;
- windings;
- ringOut;
- consumedBy;
- prev;
- _prevInResult;
- _beforeState;
- _afterState;
- _isInResult;
- /* This compare() function is for ordering segments in the sweep
- * line tree, and does so according to the following criteria:
- *
- * Consider the vertical line that lies an infinestimal step to the
- * right of the right-more of the two left endpoints of the input
- * segments. Imagine slowly moving a point up from negative infinity
- * in the increasing y direction. Which of the two segments will that
- * point intersect first? That segment comes 'before' the other one.
- *
- * If neither segment would be intersected by such a line, (if one
- * or more of the segments are vertical) then the line to be considered
- * is directly on the right-more of the two left inputs.
- */
- static compare(a, b) {
- const alx = a.leftSE.point.x;
- const blx = b.leftSE.point.x;
- const arx = a.rightSE.point.x;
- const brx = b.rightSE.point.x;
- // check if they're even in the same vertical plane
- if (brx.isLessThan(alx))
- return 1;
- if (arx.isLessThan(blx))
- return -1;
- const aly = a.leftSE.point.y;
- const bly = b.leftSE.point.y;
- const ary = a.rightSE.point.y;
- const bry = b.rightSE.point.y;
- // is left endpoint of segment B the right-more?
- if (alx.isLessThan(blx)) {
- // are the two segments in the same horizontal plane?
- if (bly.isLessThan(aly) && bly.isLessThan(ary))
- return 1;
- if (bly.isGreaterThan(aly) && bly.isGreaterThan(ary))
- return -1;
- // is the B left endpoint colinear to segment A?
- const aCmpBLeft = a.comparePoint(b.leftSE.point);
- if (aCmpBLeft < 0)
- return 1;
- if (aCmpBLeft > 0)
- return -1;
- // is the A right endpoint colinear to segment B ?
- const bCmpARight = b.comparePoint(a.rightSE.point);
- if (bCmpARight !== 0)
- return bCmpARight;
- // colinear segments, consider the one with left-more
- // left endpoint to be first (arbitrary?)
- return -1;
- }
- // is left endpoint of segment A the right-more?
- if (alx.isGreaterThan(blx)) {
- if (aly.isLessThan(bly) && aly.isLessThan(bry))
- return -1;
- if (aly.isGreaterThan(bly) && aly.isGreaterThan(bry))
- return 1;
- // is the A left endpoint colinear to segment B?
- const bCmpALeft = b.comparePoint(a.leftSE.point);
- if (bCmpALeft !== 0)
- return bCmpALeft;
- // is the B right endpoint colinear to segment A?
- const aCmpBRight = a.comparePoint(b.rightSE.point);
- if (aCmpBRight < 0)
- return 1;
- if (aCmpBRight > 0)
- return -1;
- // colinear segments, consider the one with left-more
- // left endpoint to be first (arbitrary?)
- return 1;
- }
- // if we get here, the two left endpoints are in the same
- // vertical plane, ie alx === blx
- // consider the lower left-endpoint to come first
- if (aly.isLessThan(bly))
- return -1;
- if (aly.isGreaterThan(bly))
- return 1;
- // left endpoints are identical
- // check for colinearity by using the left-more right endpoint
- // is the A right endpoint more left-more?
- if (arx.isLessThan(brx)) {
- const bCmpARight = b.comparePoint(a.rightSE.point);
- if (bCmpARight !== 0)
- return bCmpARight;
- }
- // is the B right endpoint more left-more?
- if (arx.isGreaterThan(brx)) {
- const aCmpBRight = a.comparePoint(b.rightSE.point);
- if (aCmpBRight < 0)
- return 1;
- if (aCmpBRight > 0)
- return -1;
- }
- if (!arx.eq(brx)) {
- // are these two [almost] vertical segments with opposite orientation?
- // if so, the one with the lower right endpoint comes first
- const ay = ary.minus(aly);
- const ax = arx.minus(alx);
- const by = bry.minus(bly);
- const bx = brx.minus(blx);
- if (ay.isGreaterThan(ax) && by.isLessThan(bx))
- return 1;
- if (ay.isLessThan(ax) && by.isGreaterThan(bx))
- return -1;
- }
- // we have colinear segments with matching orientation
- // consider the one with more left-more right endpoint to be first
- if (arx.isGreaterThan(brx))
- return 1;
- if (arx.isLessThan(brx))
- return -1;
- // if we get here, two two right endpoints are in the same
- // vertical plane, ie arx === brx
- // consider the lower right-endpoint to come first
- if (ary.isLessThan(bry))
- return -1;
- if (ary.isGreaterThan(bry))
- return 1;
- // right endpoints identical as well, so the segments are idential
- // fall back on creation order as consistent tie-breaker
- if (a.id < b.id)
- return -1;
- if (a.id > b.id)
- return 1;
- // identical segment, ie a === b
- return 0;
- }
- /* Warning: a reference to ringWindings input will be stored,
- * and possibly will be later modified */
- constructor(leftSE, rightSE, rings, windings) {
- this.id = ++segmentId;
- this.leftSE = leftSE;
- leftSE.segment = this;
- leftSE.otherSE = rightSE;
- this.rightSE = rightSE;
- rightSE.segment = this;
- rightSE.otherSE = leftSE;
- this.rings = rings;
- this.windings = windings;
- // left unset for performance, set later in algorithm
- // this.ringOut, this.consumedBy, this.prev
- }
- static fromRing(pt1, pt2, ring) {
- let leftPt, rightPt, winding;
- // ordering the two points according to sweep line ordering
- const cmpPts = SweepEvent.comparePoints(pt1, pt2);
- if (cmpPts < 0) {
- leftPt = pt1;
- rightPt = pt2;
- winding = 1;
- }
- else if (cmpPts > 0) {
- leftPt = pt2;
- rightPt = pt1;
- winding = -1;
- }
- else
- throw new Error(`Tried to create degenerate segment at [${pt1.x}, ${pt1.y}]`);
- const leftSE = new SweepEvent(leftPt, true);
- const rightSE = new SweepEvent(rightPt, false);
- return new Segment(leftSE, rightSE, [ring], [winding]);
- }
- /* When a segment is split, the rightSE is replaced with a new sweep event */
- replaceRightSE(newRightSE) {
- this.rightSE = newRightSE;
- this.rightSE.segment = this;
- this.rightSE.otherSE = this.leftSE;
- this.leftSE.otherSE = this.rightSE;
- }
- bbox() {
- const y1 = this.leftSE.point.y;
- const y2 = this.rightSE.point.y;
- return {
- ll: { x: this.leftSE.point.x, y: y1.isLessThan(y2) ? y1 : y2 },
- ur: { x: this.rightSE.point.x, y: y1.isGreaterThan(y2) ? y1 : y2 },
- };
- }
- /* A vector from the left point to the right */
- vector() {
- return {
- x: this.rightSE.point.x.minus(this.leftSE.point.x),
- y: this.rightSE.point.y.minus(this.leftSE.point.y),
- };
- }
- isAnEndpoint(pt) {
- return ((pt.x.eq(this.leftSE.point.x) && pt.y.eq(this.leftSE.point.y)) ||
- (pt.x.eq(this.rightSE.point.x) && pt.y.eq(this.rightSE.point.y)));
- }
- /* Compare this segment with a point.
- *
- * A point P is considered to be colinear to a segment if there
- * exists a distance D such that if we travel along the segment
- * from one * endpoint towards the other a distance D, we find
- * ourselves at point P.
- *
- * Return value indicates:
- *
- * 1: point lies above the segment (to the left of vertical)
- * 0: point is colinear to segment
- * -1: point lies below the segment (to the right of vertical)
- */
- comparePoint(point) {
- return precision.orient(this.leftSE.point, point, this.rightSE.point);
- }
- /**
- * Given another segment, returns the first non-trivial intersection
- * between the two segments (in terms of sweep line ordering), if it exists.
- *
- * A 'non-trivial' intersection is one that will cause one or both of the
- * segments to be split(). As such, 'trivial' vs. 'non-trivial' intersection:
- *
- * * endpoint of segA with endpoint of segB --> trivial
- * * endpoint of segA with point along segB --> non-trivial
- * * endpoint of segB with point along segA --> non-trivial
- * * point along segA with point along segB --> non-trivial
- *
- * If no non-trivial intersection exists, return null
- * Else, return null.
- */
- getIntersection(other) {
- // If bboxes don't overlap, there can't be any intersections
- const tBbox = this.bbox();
- const oBbox = other.bbox();
- const bboxOverlap = getBboxOverlap(tBbox, oBbox);
- if (bboxOverlap === null)
- return null;
- // We first check to see if the endpoints can be considered intersections.
- // This will 'snap' intersections to endpoints if possible, and will
- // handle cases of colinearity.
- const tlp = this.leftSE.point;
- const trp = this.rightSE.point;
- const olp = other.leftSE.point;
- const orp = other.rightSE.point;
- // does each endpoint touch the other segment?
- // note that we restrict the 'touching' definition to only allow segments
- // to touch endpoints that lie forward from where we are in the sweep line pass
- const touchesOtherLSE = isInBbox(tBbox, olp) && this.comparePoint(olp) === 0;
- const touchesThisLSE = isInBbox(oBbox, tlp) && other.comparePoint(tlp) === 0;
- const touchesOtherRSE = isInBbox(tBbox, orp) && this.comparePoint(orp) === 0;
- const touchesThisRSE = isInBbox(oBbox, trp) && other.comparePoint(trp) === 0;
- // do left endpoints match?
- if (touchesThisLSE && touchesOtherLSE) {
- // these two cases are for colinear segments with matching left
- // endpoints, and one segment being longer than the other
- if (touchesThisRSE && !touchesOtherRSE)
- return trp;
- if (!touchesThisRSE && touchesOtherRSE)
- return orp;
- // either the two segments match exactly (two trival intersections)
- // or just on their left endpoint (one trivial intersection
- return null;
- }
- // does this left endpoint matches (other doesn't)
- if (touchesThisLSE) {
- // check for segments that just intersect on opposing endpoints
- if (touchesOtherRSE) {
- if (tlp.x.eq(orp.x) && tlp.y.eq(orp.y))
- return null;
- }
- // t-intersection on left endpoint
- return tlp;
- }
- // does other left endpoint matches (this doesn't)
- if (touchesOtherLSE) {
- // check for segments that just intersect on opposing endpoints
- if (touchesThisRSE) {
- if (trp.x.eq(olp.x) && trp.y.eq(olp.y))
- return null;
- }
- // t-intersection on left endpoint
- return olp;
- }
- // trivial intersection on right endpoints
- if (touchesThisRSE && touchesOtherRSE)
- return null;
- // t-intersections on just one right endpoint
- if (touchesThisRSE)
- return trp;
- if (touchesOtherRSE)
- return orp;
- // None of our endpoints intersect. Look for a general intersection between
- // infinite lines laid over the segments
- const pt = intersection$1(tlp, this.vector(), olp, other.vector());
- // are the segments parrallel? Note that if they were colinear with overlap,
- // they would have an endpoint intersection and that case was already handled above
- if (pt === null)
- return null;
- // is the intersection found between the lines not on the segments?
- if (!isInBbox(bboxOverlap, pt))
- return null;
- // round the the computed point if needed
- return precision.snap(pt);
- }
- /**
- * Split the given segment into multiple segments on the given points.
- * * Each existing segment will retain its leftSE and a new rightSE will be
- * generated for it.
- * * A new segment will be generated which will adopt the original segment's
- * rightSE, and a new leftSE will be generated for it.
- * * If there are more than two points given to split on, new segments
- * in the middle will be generated with new leftSE and rightSE's.
- * * An array of the newly generated SweepEvents will be returned.
- *
- * Warning: input array of points is modified
- */
- split(point) {
- const newEvents = [];
- const alreadyLinked = point.events !== undefined;
- const newLeftSE = new SweepEvent(point, true);
- const newRightSE = new SweepEvent(point, false);
- const oldRightSE = this.rightSE;
- this.replaceRightSE(newRightSE);
- newEvents.push(newRightSE);
- newEvents.push(newLeftSE);
- const newSeg = new Segment(newLeftSE, oldRightSE, this.rings.slice(), this.windings.slice());
- // when splitting a nearly vertical downward-facing segment,
- // sometimes one of the resulting new segments is vertical, in which
- // case its left and right events may need to be swapped
- if (SweepEvent.comparePoints(newSeg.leftSE.point, newSeg.rightSE.point) > 0) {
- newSeg.swapEvents();
- }
- if (SweepEvent.comparePoints(this.leftSE.point, this.rightSE.point) > 0) {
- this.swapEvents();
- }
- // in the point we just used to create new sweep events with was already
- // linked to other events, we need to check if either of the affected
- // segments should be consumed
- if (alreadyLinked) {
- newLeftSE.checkForConsuming();
- newRightSE.checkForConsuming();
- }
- return newEvents;
- }
- /* Swap which event is left and right */
- swapEvents() {
- const tmpEvt = this.rightSE;
- this.rightSE = this.leftSE;
- this.leftSE = tmpEvt;
- this.leftSE.isLeft = true;
- this.rightSE.isLeft = false;
- for (let i = 0, iMax = this.windings.length; i < iMax; i++) {
- this.windings[i] *= -1;
- }
- }
- /* Consume another segment. We take their rings under our wing
- * and mark them as consumed. Use for perfectly overlapping segments */
- consume(other) {
- let consumer = this;
- let consumee = other;
- while (consumer.consumedBy)
- consumer = consumer.consumedBy;
- while (consumee.consumedBy)
- consumee = consumee.consumedBy;
- const cmp = Segment.compare(consumer, consumee);
- if (cmp === 0)
- return; // already consumed
- // the winner of the consumption is the earlier segment
- // according to sweep line ordering
- if (cmp > 0) {
- const tmp = consumer;
- consumer = consumee;
- consumee = tmp;
- }
- // make sure a segment doesn't consume it's prev
- if (consumer.prev === consumee) {
- const tmp = consumer;
- consumer = consumee;
- consumee = tmp;
- }
- for (let i = 0, iMax = consumee.rings.length; i < iMax; i++) {
- const ring = consumee.rings[i];
- const winding = consumee.windings[i];
- const index = consumer.rings.indexOf(ring);
- if (index === -1) {
- consumer.rings.push(ring);
- consumer.windings.push(winding);
- }
- else
- consumer.windings[index] += winding;
- }
- consumee.rings = null;
- consumee.windings = null;
- consumee.consumedBy = consumer;
- // mark sweep events consumed as to maintain ordering in sweep event queue
- consumee.leftSE.consumedBy = consumer.leftSE;
- consumee.rightSE.consumedBy = consumer.rightSE;
- }
- /* The first segment previous segment chain that is in the result */
- prevInResult() {
- if (this._prevInResult !== undefined)
- return this._prevInResult;
- if (!this.prev)
- this._prevInResult = null;
- else if (this.prev.isInResult())
- this._prevInResult = this.prev;
- else
- this._prevInResult = this.prev.prevInResult();
- return this._prevInResult;
- }
- beforeState() {
- if (this._beforeState !== undefined)
- return this._beforeState;
- if (!this.prev)
- this._beforeState = {
- rings: [],
- windings: [],
- multiPolys: [],
- };
- else {
- const seg = this.prev.consumedBy || this.prev;
- this._beforeState = seg.afterState();
- }
- return this._beforeState;
- }
- afterState() {
- if (this._afterState !== undefined)
- return this._afterState;
- const beforeState = this.beforeState();
- this._afterState = {
- rings: beforeState.rings.slice(0),
- windings: beforeState.windings.slice(0),
- multiPolys: [],
- };
- const ringsAfter = this._afterState.rings;
- const windingsAfter = this._afterState.windings;
- const mpsAfter = this._afterState.multiPolys;
- // calculate ringsAfter, windingsAfter
- for (let i = 0, iMax = this.rings.length; i < iMax; i++) {
- const ring = this.rings[i];
- const winding = this.windings[i];
- const index = ringsAfter.indexOf(ring);
- if (index === -1) {
- ringsAfter.push(ring);
- windingsAfter.push(winding);
- }
- else
- windingsAfter[index] += winding;
- }
- // calcualte polysAfter
- const polysAfter = [];
- const polysExclude = [];
- for (let i = 0, iMax = ringsAfter.length; i < iMax; i++) {
- if (windingsAfter[i] === 0)
- continue; // non-zero rule
- const ring = ringsAfter[i];
- const poly = ring.poly;
- if (polysExclude.indexOf(poly) !== -1)
- continue;
- if (ring.isExterior)
- polysAfter.push(poly);
- else {
- if (polysExclude.indexOf(poly) === -1)
- polysExclude.push(poly);
- const index = polysAfter.indexOf(ring.poly);
- if (index !== -1)
- polysAfter.splice(index, 1);
- }
- }
- // calculate multiPolysAfter
- for (let i = 0, iMax = polysAfter.length; i < iMax; i++) {
- const mp = polysAfter[i].multiPoly;
- if (mpsAfter.indexOf(mp) === -1)
- mpsAfter.push(mp);
- }
- return this._afterState;
- }
- /* Is this segment part of the final result? */
- isInResult() {
- // if we've been consumed, we're not in the result
- if (this.consumedBy)
- return false;
- if (this._isInResult !== undefined)
- return this._isInResult;
- const mpsBefore = this.beforeState().multiPolys;
- const mpsAfter = this.afterState().multiPolys;
- switch (operation.type) {
- case "union": {
- // UNION - included iff:
- // * On one side of us there is 0 poly interiors AND
- // * On the other side there is 1 or more.
- const noBefores = mpsBefore.length === 0;
- const noAfters = mpsAfter.length === 0;
- this._isInResult = noBefores !== noAfters;
- break;
- }
- case "intersection": {
- // INTERSECTION - included iff:
- // * on one side of us all multipolys are rep. with poly interiors AND
- // * on the other side of us, not all multipolys are repsented
- // with poly interiors
- let least;
- let most;
- if (mpsBefore.length < mpsAfter.length) {
- least = mpsBefore.length;
- most = mpsAfter.length;
- }
- else {
- least = mpsAfter.length;
- most = mpsBefore.length;
- }
- this._isInResult = most === operation.numMultiPolys && least < most;
- break;
- }
- case "xor": {
- // XOR - included iff:
- // * the difference between the number of multipolys represented
- // with poly interiors on our two sides is an odd number
- const diff = Math.abs(mpsBefore.length - mpsAfter.length);
- this._isInResult = diff % 2 === 1;
- break;
- }
- case "difference": {
- // DIFFERENCE included iff:
- // * on exactly one side, we have just the subject
- const isJustSubject = (mps) => mps.length === 1 && mps[0].isSubject;
- this._isInResult = isJustSubject(mpsBefore) !== isJustSubject(mpsAfter);
- break;
- }
- }
- return this._isInResult;
- }
- }
- class RingIn {
- poly;
- isExterior;
- segments;
- bbox;
- constructor(geomRing, poly, isExterior) {
- if (!Array.isArray(geomRing) || geomRing.length === 0) {
- throw new Error("Input geometry is not a valid Polygon or MultiPolygon");
- }
- this.poly = poly;
- this.isExterior = isExterior;
- this.segments = [];
- if (typeof geomRing[0][0] !== "number" ||
- typeof geomRing[0][1] !== "number") {
- throw new Error("Input geometry is not a valid Polygon or MultiPolygon");
- }
- const firstPoint = precision.snap({ x: new BigNumber(geomRing[0][0]), y: new BigNumber(geomRing[0][1]) });
- this.bbox = {
- ll: { x: firstPoint.x, y: firstPoint.y },
- ur: { x: firstPoint.x, y: firstPoint.y },
- };
- let prevPoint = firstPoint;
- for (let i = 1, iMax = geomRing.length; i < iMax; i++) {
- if (typeof geomRing[i][0] !== "number" ||
- typeof geomRing[i][1] !== "number") {
- throw new Error("Input geometry is not a valid Polygon or MultiPolygon");
- }
- const point = precision.snap({ x: new BigNumber(geomRing[i][0]), y: new BigNumber(geomRing[i][1]) });
- // skip repeated points
- if (point.x.eq(prevPoint.x) && point.y.eq(prevPoint.y))
- continue;
- this.segments.push(Segment.fromRing(prevPoint, point, this));
- if (point.x.isLessThan(this.bbox.ll.x))
- this.bbox.ll.x = point.x;
- if (point.y.isLessThan(this.bbox.ll.y))
- this.bbox.ll.y = point.y;
- if (point.x.isGreaterThan(this.bbox.ur.x))
- this.bbox.ur.x = point.x;
- if (point.y.isGreaterThan(this.bbox.ur.y))
- this.bbox.ur.y = point.y;
- prevPoint = point;
- }
- // add segment from last to first if last is not the same as first
- if (!firstPoint.x.eq(prevPoint.x) || !firstPoint.y.eq(prevPoint.y)) {
- this.segments.push(Segment.fromRing(prevPoint, firstPoint, this));
- }
- }
- getSweepEvents() {
- const sweepEvents = [];
- for (let i = 0, iMax = this.segments.length; i < iMax; i++) {
- const segment = this.segments[i];
- sweepEvents.push(segment.leftSE);
- sweepEvents.push(segment.rightSE);
- }
- return sweepEvents;
- }
- }
- class PolyIn {
- multiPoly;
- exteriorRing;
- interiorRings;
- bbox;
- constructor(geomPoly, multiPoly) {
- if (!Array.isArray(geomPoly)) {
- throw new Error("Input geometry is not a valid Polygon or MultiPolygon");
- }
- this.exteriorRing = new RingIn(geomPoly[0], this, true);
- // copy by value
- this.bbox = {
- ll: { x: this.exteriorRing.bbox.ll.x, y: this.exteriorRing.bbox.ll.y },
- ur: { x: this.exteriorRing.bbox.ur.x, y: this.exteriorRing.bbox.ur.y },
- };
- this.interiorRings = [];
- for (let i = 1, iMax = geomPoly.length; i < iMax; i++) {
- const ring = new RingIn(geomPoly[i], this, false);
- if (ring.bbox.ll.x.isLessThan(this.bbox.ll.x))
- this.bbox.ll.x = ring.bbox.ll.x;
- if (ring.bbox.ll.y.isLessThan(this.bbox.ll.y))
- this.bbox.ll.y = ring.bbox.ll.y;
- if (ring.bbox.ur.x.isGreaterThan(this.bbox.ur.x))
- this.bbox.ur.x = ring.bbox.ur.x;
- if (ring.bbox.ur.y.isGreaterThan(this.bbox.ur.y))
- this.bbox.ur.y = ring.bbox.ur.y;
- this.interiorRings.push(ring);
- }
- this.multiPoly = multiPoly;
- }
- getSweepEvents() {
- const sweepEvents = this.exteriorRing.getSweepEvents();
- for (let i = 0, iMax = this.interiorRings.length; i < iMax; i++) {
- const ringSweepEvents = this.interiorRings[i].getSweepEvents();
- for (let j = 0, jMax = ringSweepEvents.length; j < jMax; j++) {
- sweepEvents.push(ringSweepEvents[j]);
- }
- }
- return sweepEvents;
- }
- }
- class MultiPolyIn {
- isSubject;
- polys;
- bbox;
- constructor(geom, isSubject) {
- if (!Array.isArray(geom)) {
- throw new Error("Input geometry is not a valid Polygon or MultiPolygon");
- }
- try {
- // if the input looks like a polygon, convert it to a multipolygon
- if (typeof geom[0][0][0] === "number")
- geom = [geom];
- }
- catch (ex) {
- // The input is either malformed or has empty arrays.
- // In either case, it will be handled later on.
- }
- this.polys = [];
- this.bbox = {
- ll: { x: new BigNumber(Number.POSITIVE_INFINITY), y: new BigNumber(Number.POSITIVE_INFINITY) },
- ur: { x: new BigNumber(Number.NEGATIVE_INFINITY), y: new BigNumber(Number.NEGATIVE_INFINITY) },
- };
- for (let i = 0, iMax = geom.length; i < iMax; i++) {
- const poly = new PolyIn(geom[i], this);
- if (poly.bbox.ll.x.isLessThan(this.bbox.ll.x))
- this.bbox.ll.x = poly.bbox.ll.x;
- if (poly.bbox.ll.y.isLessThan(this.bbox.ll.y))
- this.bbox.ll.y = poly.bbox.ll.y;
- if (poly.bbox.ur.x.isGreaterThan(this.bbox.ur.x))
- this.bbox.ur.x = poly.bbox.ur.x;
- if (poly.bbox.ur.y.isGreaterThan(this.bbox.ur.y))
- this.bbox.ur.y = poly.bbox.ur.y;
- this.polys.push(poly);
- }
- this.isSubject = isSubject;
- }
- getSweepEvents() {
- const sweepEvents = [];
- for (let i = 0, iMax = this.polys.length; i < iMax; i++) {
- const polySweepEvents = this.polys[i].getSweepEvents();
- for (let j = 0, jMax = polySweepEvents.length; j < jMax; j++) {
- sweepEvents.push(polySweepEvents[j]);
- }
- }
- return sweepEvents;
- }
- }
- class RingOut {
- events;
- poly;
- _isExteriorRing;
- _enclosingRing;
- /* Given the segments from the sweep line pass, compute & return a series
- * of closed rings from all the segments marked to be part of the result */
- static factory(allSegments) {
- const ringsOut = [];
- for (let i = 0, iMax = allSegments.length; i < iMax; i++) {
- const segment = allSegments[i];
- if (!segment.isInResult() || segment.ringOut)
- continue;
- let prevEvent = null;
- let event = segment.leftSE;
- let nextEvent = segment.rightSE;
- const events = [event];
- const startingPoint = event.point;
- const intersectionLEs = [];
- /* Walk the chain of linked events to form a closed ring */
- while (true) {
- prevEvent = event;
- event = nextEvent;
- events.push(event);
- /* Is the ring complete? */
- if (event.point === startingPoint)
- break;
- while (true) {
- const availableLEs = event.getAvailableLinkedEvents();
- /* Did we hit a dead end? This shouldn't happen. Indicates some earlier
- * part of the algorithm malfunctioned... please file a bug report. */
- if (availableLEs.length === 0) {
- const firstPt = events[0].point;
- const lastPt = events[events.length - 1].point;
- throw new Error(`Unable to complete output ring starting at [${firstPt.x},` +
- ` ${firstPt.y}]. Last matching segment found ends at` +
- ` [${lastPt.x}, ${lastPt.y}].`);
- }
- /* Only one way to go, so cotinue on the path */
- if (availableLEs.length === 1) {
- nextEvent = availableLEs[0].otherSE;
- break;
- }
- /* We must have an intersection. Check for a completed loop */
- let indexLE = null;
- for (let j = 0, jMax = intersectionLEs.length; j < jMax; j++) {
- if (intersectionLEs[j].point === event.point) {
- indexLE = j;
- break;
- }
- }
- /* Found a completed loop. Cut that off and make a ring */
- if (indexLE !== null) {
- const intersectionLE = intersectionLEs.splice(indexLE)[0];
- const ringEvents = events.splice(intersectionLE.index);
- ringEvents.unshift(ringEvents[0].otherSE);
- ringsOut.push(new RingOut(ringEvents.reverse()));
- continue;
- }
- /* register the intersection */
- intersectionLEs.push({
- index: events.length,
- point: event.point,
- });
- /* Choose the left-most option to continue the walk */
- const comparator = event.getLeftmostComparator(prevEvent);
- nextEvent = availableLEs.sort(comparator)[0].otherSE;
- break;
- }
- }
- ringsOut.push(new RingOut(events));
- }
- return ringsOut;
- }
- constructor(events) {
- this.events = events;
- for (let i = 0, iMax = events.length; i < iMax; i++) {
- events[i].segment.ringOut = this;
- }
- this.poly = null;
- }
- getGeom() {
- // Remove superfluous points (ie extra points along a straight line),
- let prevPt = this.events[0].point;
- const points = [prevPt];
- for (let i = 1, iMax = this.events.length - 1; i < iMax; i++) {
- const pt = this.events[i].point;
- const nextPt = this.events[i + 1].point;
- if (precision.orient(pt, prevPt, nextPt) === 0)
- continue;
- points.push(pt);
- prevPt = pt;
- }
- // ring was all (within rounding error of angle calc) colinear points
- if (points.length === 1)
- return null;
- // check if the starting point is necessary
- const pt = points[0];
- const nextPt = points[1];
- if (precision.orient(pt, prevPt, nextPt) === 0)
- points.shift();
- points.push(points[0]);
- const step = this.isExteriorRing() ? 1 : -1;
- const iStart = this.isExteriorRing() ? 0 : points.length - 1;
- const iEnd = this.isExteriorRing() ? points.length : -1;
- const orderedPoints = [];
- for (let i = iStart; i != iEnd; i += step)
- orderedPoints.push([points[i].x.toNumber(), points[i].y.toNumber()]);
- return orderedPoints;
- }
- isExteriorRing() {
- if (this._isExteriorRing === undefined) {
- const enclosing = this.enclosingRing();
- this._isExteriorRing = enclosing ? !enclosing.isExteriorRing() : true;
- }
- return this._isExteriorRing;
- }
- enclosingRing() {
- if (this._enclosingRing === undefined) {
- this._enclosingRing = this._calcEnclosingRing();
- }
- return this._enclosingRing;
- }
- /* Returns the ring that encloses this one, if any */
- _calcEnclosingRing() {
- // start with the ealier sweep line event so that the prevSeg
- // chain doesn't lead us inside of a loop of ours
- let leftMostEvt = this.events[0];
- for (let i = 1, iMax = this.events.length; i < iMax; i++) {
- const evt = this.events[i];
- if (SweepEvent.compare(leftMostEvt, evt) > 0)
- leftMostEvt = evt;
- }
- let prevSeg = leftMostEvt.segment.prevInResult();
- let prevPrevSeg = prevSeg ? prevSeg.prevInResult() : null;
- while (true) {
- // no segment found, thus no ring can enclose us
- if (!prevSeg)
- return null;
- // no segments below prev segment found, thus the ring of the prev
- // segment must loop back around and enclose us
- if (!prevPrevSeg)
- return prevSeg.ringOut;
- // if the two segments are of different rings, the ring of the prev
- // segment must either loop around us or the ring of the prev prev
- // seg, which would make us and the ring of the prev peers
- if (prevPrevSeg.ringOut !== prevSeg.ringOut) {
- if (prevPrevSeg.ringOut?.enclosingRing() !== prevSeg.ringOut) {
- return prevSeg.ringOut;
- }
- else
- return prevSeg.ringOut?.enclosingRing();
- }
- // two segments are from the same ring, so this was a penisula
- // of that ring. iterate downward, keep searching
- prevSeg = prevPrevSeg.prevInResult();
- prevPrevSeg = prevSeg ? prevSeg.prevInResult() : null;
- }
- }
- }
- class PolyOut {
- exteriorRing;
- interiorRings;
- constructor(exteriorRing) {
- this.exteriorRing = exteriorRing;
- exteriorRing.poly = this;
- this.interiorRings = [];
- }
- addInterior(ring) {
- this.interiorRings.push(ring);
- ring.poly = this;
- }
- getGeom() {
- const geom0 = this.exteriorRing.getGeom();
- // exterior ring was all (within rounding error of angle calc) colinear points
- if (geom0 === null)
- return null;
- const geom = [geom0];
- for (let i = 0, iMax = this.interiorRings.length; i < iMax; i++) {
- const ringGeom = this.interiorRings[i].getGeom();
- // interior ring was all (within rounding error of angle calc) colinear points
- if (ringGeom === null)
- continue;
- geom.push(ringGeom);
- }
- return geom;
- }
- }
- class MultiPolyOut {
- rings;
- polys;
- constructor(rings) {
- this.rings = rings;
- this.polys = this._composePolys(rings);
- }
- getGeom() {
- const geom = [];
- for (let i = 0, iMax = this.polys.length; i < iMax; i++) {
- const polyGeom = this.polys[i].getGeom();
- // exterior ring was all (within rounding error of angle calc) colinear points
- if (polyGeom === null)
- continue;
- geom.push(polyGeom);
- }
- return geom;
- }
- _composePolys(rings) {
- const polys = [];
- for (let i = 0, iMax = rings.length; i < iMax; i++) {
- const ring = rings[i];
- if (ring.poly)
- continue;
- if (ring.isExteriorRing())
- polys.push(new PolyOut(ring));
- else {
- const enclosingRing = ring.enclosingRing();
- if (!enclosingRing?.poly)
- polys.push(new PolyOut(enclosingRing));
- enclosingRing?.poly?.addInterior(ring);
- }
- }
- return polys;
- }
- }
- /**
- * NOTE: We must be careful not to change any segments while
- * they are in the SplayTree. AFAIK, there's no way to tell
- * the tree to rebalance itself - thus before splitting
- * a segment that's in the tree, we remove it from the tree,
- * do the split, then re-insert it. (Even though splitting a
- * segment *shouldn't* change its correct position in the
- * sweep line tree, the reality is because of rounding errors,
- * it sometimes does.)
- */
- class SweepLine {
- queue;
- tree;
- segments;
- constructor(queue, comparator = Segment.compare) {
- this.queue = queue;
- this.tree = new SplayTreeSet(comparator);
- this.segments = [];
- }
- process(event) {
- const segment = event.segment;
- const newEvents = [];
- // if we've already been consumed by another segment,
- // clean up our body parts and get out
- if (event.consumedBy) {
- if (event.isLeft)
- this.queue.delete(event.otherSE);
- else
- this.tree.delete(segment);
- return newEvents;
- }
- if (event.isLeft)
- this.tree.add(segment);
- let prevSeg = segment;
- let nextSeg = segment;
- // skip consumed segments still in tree
- do {
- prevSeg = this.tree.lastBefore(prevSeg);
- } while (prevSeg != null && prevSeg.consumedBy != undefined);
- // skip consumed segments still in tree
- do {
- nextSeg = this.tree.firstAfter(nextSeg);
- } while (nextSeg != null && nextSeg.consumedBy != undefined);
- if (event.isLeft) {
- // Check for intersections against the previous segment in the sweep line
- let prevMySplitter = null;
- if (prevSeg) {
- const prevInter = prevSeg.getIntersection(segment);
- if (prevInter !== null) {
- if (!segment.isAnEndpoint(prevInter))
- prevMySplitter = prevInter;
- if (!prevSeg.isAnEndpoint(prevInter)) {
- const newEventsFromSplit = this._splitSafely(prevSeg, prevInter);
- for (let i = 0, iMax = newEventsFromSplit.length; i < iMax; i++) {
- newEvents.push(newEventsFromSplit[i]);
- }
- }
- }
- }
- // Check for intersections against the next segment in the sweep line
- let nextMySplitter = null;
- if (nextSeg) {
- const nextInter = nextSeg.getIntersection(segment);
- if (nextInter !== null) {
- if (!segment.isAnEndpoint(nextInter))
- nextMySplitter = nextInter;
- if (!nextSeg.isAnEndpoint(nextInter)) {
- const newEventsFromSplit = this._splitSafely(nextSeg, nextInter);
- for (let i = 0, iMax = newEventsFromSplit.length; i < iMax; i++) {
- newEvents.push(newEventsFromSplit[i]);
- }
- }
- }
- }
- // For simplicity, even if we find more than one intersection we only
- // spilt on the 'earliest' (sweep-line style) of the intersections.
- // The other intersection will be handled in a future process().
- if (prevMySplitter !== null || nextMySplitter !== null) {
- let mySplitter = null;
- if (prevMySplitter === null)
- mySplitter = nextMySplitter;
- else if (nextMySplitter === null)
- mySplitter = prevMySplitter;
- else {
- const cmpSplitters = SweepEvent.comparePoints(prevMySplitter, nextMySplitter);
- mySplitter = cmpSplitters <= 0 ? prevMySplitter : nextMySplitter;
- }
- // Rounding errors can cause changes in ordering,
- // so remove afected segments and right sweep events before splitting
- this.queue.delete(segment.rightSE);
- newEvents.push(segment.rightSE);
- const newEventsFromSplit = segment.split(mySplitter);
- for (let i = 0, iMax = newEventsFromSplit.length; i < iMax; i++) {
- newEvents.push(newEventsFromSplit[i]);
- }
- }
- if (newEvents.length > 0) {
- // We found some intersections, so re-do the current event to
- // make sure sweep line ordering is totally consistent for later
- // use with the segment 'prev' pointers
- this.tree.delete(segment);
- newEvents.push(event);
- }
- else {
- // done with left event
- this.segments.push(segment);
- segment.prev = prevSeg;
- }
- }
- else {
- // event.isRight
- // since we're about to be removed from the sweep line, check for
- // intersections between our previous and next segments
- if (prevSeg && nextSeg) {
- const inter = prevSeg.getIntersection(nextSeg);
- if (inter !== null) {
- if (!prevSeg.isAnEndpoint(inter)) {
- const newEventsFromSplit = this._splitSafely(prevSeg, inter);
- for (let i = 0, iMax = newEventsFromSplit.length; i < iMax; i++) {
- newEvents.push(newEventsFromSplit[i]);
- }
- }
- if (!nextSeg.isAnEndpoint(inter)) {
- const newEventsFromSplit = this._splitSafely(nextSeg, inter);
- for (let i = 0, iMax = newEventsFromSplit.length; i < iMax; i++) {
- newEvents.push(newEventsFromSplit[i]);
- }
- }
- }
- }
- this.tree.delete(segment);
- }
- return newEvents;
- }
- /* Safely split a segment that is currently in the datastructures
- * IE - a segment other than the one that is currently being processed. */
- _splitSafely(seg, pt) {
- // Rounding errors can cause changes in ordering,
- // so remove afected segments and right sweep events before splitting
- // removeNode() doesn't work, so have re-find the seg
- // https://github.com/w8r/splay-tree/pull/5
- this.tree.delete(seg);
- const rightSE = seg.rightSE;
- this.queue.delete(rightSE);
- const newEvents = seg.split(pt);
- newEvents.push(rightSE);
- // splitting can trigger consumption
- if (seg.consumedBy === undefined)
- this.tree.add(seg);
- return newEvents;
- }
- }
- class Operation {
- type;
- numMultiPolys;
- run(type, geom, moreGeoms) {
- operation.type = type;
- /* Convert inputs to MultiPoly objects */
- const multipolys = [new MultiPolyIn(geom, true)];
- for (let i = 0, iMax = moreGeoms.length; i < iMax; i++) {
- multipolys.push(new MultiPolyIn(moreGeoms[i], false));
- }
- operation.numMultiPolys = multipolys.length;
- /* BBox optimization for difference operation
- * If the bbox of a multipolygon that's part of the clipping doesn't
- * intersect the bbox of the subject at all, we can just drop that
- * multiploygon. */
- if (operation.type === "difference") {
- // in place removal
- const subject = multipolys[0];
- let i = 1;
- while (i < multipolys.length) {
- if (getBboxOverlap(multipolys[i].bbox, subject.bbox) !== null)
- i++;
- else
- multipolys.splice(i, 1);
- }
- }
- /* BBox optimization for intersection operation
- * If we can find any pair of multipolygons whose bbox does not overlap,
- * then the result will be empty. */
- if (operation.type === "intersection") {
- // TODO: this is O(n^2) in number of polygons. By sorting the bboxes,
- // it could be optimized to O(n * ln(n))
- for (let i = 0, iMax = multipolys.length; i < iMax; i++) {
- const mpA = multipolys[i];
- for (let j = i + 1, jMax = multipolys.length; j < jMax; j++) {
- if (getBboxOverlap(mpA.bbox, multipolys[j].bbox) === null)
- return [];
- }
- }
- }
- /* Put segment endpoints in a priority queue */
- const queue = new SplayTreeSet(SweepEvent.compare);
- for (let i = 0, iMax = multipolys.length; i < iMax; i++) {
- const sweepEvents = multipolys[i].getSweepEvents();
- for (let j = 0, jMax = sweepEvents.length; j < jMax; j++) {
- queue.add(sweepEvents[j]);
- }
- }
- /* Pass the sweep line over those endpoints */
- const sweepLine = new SweepLine(queue);
- let evt = null;
- if (queue.size != 0) {
- evt = queue.first();
- queue.delete(evt);
- }
- while (evt) {
- const newEvents = sweepLine.process(evt);
- for (let i = 0, iMax = newEvents.length; i < iMax; i++) {
- const evt = newEvents[i];
- if (evt.consumedBy === undefined)
- queue.add(evt);
- }
- if (queue.size != 0) {
- evt = queue.first();
- queue.delete(evt);
- }
- else {
- evt = null;
- }
- }
- // free some memory we don't need anymore
- precision.reset();
- /* Collect and compile segments we're keeping into a multipolygon */
- const ringsOut = RingOut.factory(sweepLine.segments);
- const result = new MultiPolyOut(ringsOut);
- return result.getGeom();
- }
- }
- // singleton available by import
- const operation = new Operation();
- const union = (geom, ...moreGeoms) => operation.run("union", geom, moreGeoms);
- const intersection = (geom, ...moreGeoms) => operation.run("intersection", geom, moreGeoms);
- const xor = (geom, ...moreGeoms) => operation.run("xor", geom, moreGeoms);
- const difference = (geom, ...moreGeoms) => operation.run("difference", geom, moreGeoms);
- const setPrecision = precision.set;
- exports.difference = difference;
- exports.intersection = intersection;
- exports.setPrecision = setPrecision;
- exports.union = union;
- exports.version = version;
- exports.xor = xor;
- Object.defineProperty(exports, '__esModule', { value: true });
- }));
|